Skip to main content

Advertisement

Log in

Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Sarkar, T.R.G. Kutty, D.S. Wilkinson, J.D. Embury, and D.J. Lloyd, Tensile properties and bendability of T4 treated AA6111 aluminum alloys, Mater. Sci. Eng. A, 369(2004), No. 1–2, p. 258.

    Google Scholar 

  2. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater., 46(1998), No. 11, p. 3893.

    Article  CAS  Google Scholar 

  3. X. Wang, S. Esmaeili, and D.J. Lloyd, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, 37(2006), No. 9, p. 2691.

    Article  Google Scholar 

  4. K. Matsuda, S. Ikeno, Y. Uetani, and T. Sato, Metastable phases in an Al-Mg-Si alloy containing copper, Metall. Mater. Trans. A, 32(2001), No. 6, p. 1293.

    Article  Google Scholar 

  5. C.S. Tsao, C.Y. Chen, U.S. Jeng, and T.Y. Kuo, Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys, Acta Mater., 54(2006), No. 17, p. 4621.

    Article  CAS  Google Scholar 

  6. J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono, Secondary precipitation in an Al-Mg-Si-Cu alloy, Acta Mater., 55(2007), No. 9, p. 3015.

    Article  CAS  Google Scholar 

  7. M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys, Acta Mater., 47(1999), No. 5, p. 1537.

    Article  CAS  Google Scholar 

  8. S. Esmaeili, D. Vaumousse, M.W. Zandbergen, W.J. Poole, A. Cerezo, and D.J. Lloyd, A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe, Philos. Mag., 87(2007), No. 25, p. 3797.

    Article  CAS  Google Scholar 

  9. M.A. van Huis, J.H. Chen, H.W. Zandbergen, and M.H.F. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution, Acta Mater., 54(2006), No. 11, p. 2945.

    Article  Google Scholar 

  10. J.D. Bryant, The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet, Metall. Mater. Trans. A, 30(1999), No. 8, p. 1999.

    Article  Google Scholar 

  11. K.M.C. Wong, A.R. Daud, and A. Jalar, Microhardness and tensile properties of a 6XXX alloy through minor additions of Zr, J. Mater. Eng. Perform., 18(2009), No. 1, p. 62.

    Article  CAS  Google Scholar 

  12. Y.G. An, H. Vegter, L. Zhuang, and A. Hurkmans, Fast aging kinetics of the AA6016 Al-Mg-Si alloy and the application in forming process, Metall. Mater. Trans. A, 33(2002), No. 10, p. 3121.

    Article  Google Scholar 

  13. M.H. Larsen, J.C. Walmsley, O. Lunder, R.H. Mathiesen, and K. Nisancioglu, Intergranular corrosion of coppercontaining AA6xxx AlMgSi aluminum alloys, J. Electrochem. Soc., 155(2008), No. 11, p. C550.

    Article  CAS  Google Scholar 

  14. M. Hosseinifar and D.V. Malakhov, The sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La, Metall. Mater. Trans. A, 42(2011), No. 3, p. 825.

    Article  CAS  Google Scholar 

  15. N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd, and S. van der Zwaag, Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys, Mater. Charact., 49(2002), No. 5, p. 409.

    Article  CAS  Google Scholar 

  16. W. Khalifa, F.H. Samuel, and J.E. Gruzleski, Iron intermetallic phases in the Al corner of the Al-Si-Fe system, Metall. Mater. Trans. A, 34(2003), No. 13, p. 807.

    Article  Google Scholar 

  17. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, 1976.

    Google Scholar 

  18. Y.H. Cai, R.G. Liang, L.G. Hou, and J.S. Zhang, Effect of Cr and Mn on the microstructure of spray-formed Al-25Si-5Fe-3Cu alloy, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4248.

    Article  Google Scholar 

  19. D.J. Chakrabarti and D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater. Sci., 49(2004), No. 3–4, p. 389.

    Article  CAS  Google Scholar 

  20. Y.S. Choi, J.S. Lee, W.T. Kim, and H.Y. Ra, Solidification behavior of Al-Si-Fe alloys and phase transformation of metastable intermetallic compound by heat treatment, J. Mater. Sci., 34(1999), No. 9, p. 2163.

    Article  CAS  Google Scholar 

  21. L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski, Dissolution of iron intermetallics in Al-Si Alloys through nonequilibrium heat treatment, Metall. Mater. Trans. A, 26(1995), No. 8, p. 2161.

    Article  Google Scholar 

  22. M.A. van Huis, J.H. Chen, M.H.F. Sluiter, and H.W. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution, Acta Mater., 55(2007), No. 6, p. 2183.

    Article  Google Scholar 

  23. Y. Birol, The effect of sample preparation on the DSC analysis of 6061 alloy, J. Mater. Sci., 40(2005), No. 24, p. 6357.

    Article  CAS  Google Scholar 

  24. J. Buha, R.N. Lumley, and A.G. Crosky, Secondary ageing in an aluminium alloy 7050, Mater. Sci. Eng. A, 492(2008), No. 1–2, p. 1.

    Google Scholar 

  25. L. Zhen and S.B. Kang, Deformation and fracture behavior of two Al-Mg-Si alloys, Metall. Mater. Trans. A, 28(1997), No. 7, p. 1489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-hua Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Yh., Wang, C. & Zhang, Js. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy. Int J Miner Metall Mater 20, 659–664 (2013). https://doi.org/10.1007/s12613-013-0780-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0780-x

Keywords

Navigation