Skip to main content
Log in

Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The preparation process of the Cr(III) bath was studied based on a perspective of accelerating the formation of active Cr(III) complexes. The results of ultraviolet-visible absorption spectroscopy (UV-Vis) and electrodeposition showed that active Cr(III) complexes in the bath prepared at room temperature in several days were rare for depositing chromium. The increase of heating temperature, time, and pH value during the bath preparation promoted the formation of active Cr(III) complexes. The chromium deposition rate increased with the concentration of active Cr(III) complexes increasing. Increasing the heating temperature from 60 to 96°C, the chromium deposition rate increased from 0.40 to 0.71 μm/min. When the concentration of active Cr(III) complexes increased, the grain size of Cr coatings increased, and the carbon content of the coating decreased. It is deduced that Cr(H2O)4(OH)L2+ (L is an organic ligand, and its valence is omitted) is a primary active Cr(III) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.X. Zeng, Y.L. Sun, and J.Y. Zhang, The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid, Electrochem. Commun., 11(2009), No. 2, p. 331.

    Article  CAS  Google Scholar 

  2. J. Fang, Electroplating of Multicomponent Complex, Defense Industry Press, Beijing, 1983, p. 83.

    Google Scholar 

  3. N.V. Mandich, Chemistry & theory of chromium deposition: Part I. Chemistry, Plat. Surf. Finish., 84(1997), No. 5, p. 108.

    CAS  Google Scholar 

  4. Z. Tu, Z. Yang, and J. Zhang, Cathode polarization in trivalent chromium plating, Plat. Surf. Finish., 80(1993), No. 11, p. 79.

    CAS  Google Scholar 

  5. Z.X. Zeng, Y.X. Zhang, W.J. Zhao, and J.Y. Zhang, Role of complexing ligands in trivalent chromium electrodeposition, Surf. Coat. Technol., 205(2011), No. 20, p. 4771.

    Article  CAS  Google Scholar 

  6. Z.X. Zeng, A.M. Liang, and J.Y. Zhang, A review of recent patents on trivalent chromium plating, Recent Pat. Mater. Sci., 2(2009), No. 1, p. 50.

    Article  CAS  Google Scholar 

  7. S.K. Ibrahim, A. Watson, and D.T. Gawne, The role of formic acid and methanol on speciation rate and quality in the electrodeposition of chromium from trivalent electrolytes, Trans. Inst. Met. Finish., 75(1997), No. 5, p. 181.

    CAS  Google Scholar 

  8. J. McDougall, M. El-Sharif, and S. Ma, Chromium electrodeposition using a chromium (III) glycine complex, J. Appl. Electrochem., 28(1998), No. 9, p. 929.

    Article  CAS  Google Scholar 

  9. A. Rousseau and P. Benaben, Electrochemical study of a trivalent chromium bath for compositionally modulated multilayer application, Met. Finish., 100(2002), No. 2, p. 92.

    Article  CAS  Google Scholar 

  10. N. Van Phuong, S.C. Kwon, J.Y. Lee, J. Shin, B.T. Huy, and Y.I. Lee, Mechanistic study on the effect of PEG molecules in a trivalent chromium electrodeposition process, Microchem. J., 99(2011), No. 1, p. 7.

    Article  Google Scholar 

  11. I. Drela, J. Szynkarczuk, and J. Kubicki, Electrodeposition of chromium from Cr (III) electrolytes in the presence of formic acid, J. Appl. Electrochem., 19(1989), No. 6, p. 933.

    Article  CAS  Google Scholar 

  12. F.I. Danilov and V.S. Protsenko, Kinetics and mechanism of chromium electroplating from Cr(III) baths, Prot. Met., 37(2001), No. 3, p. 223.

    Article  CAS  Google Scholar 

  13. G. Hong, K.S. Siow, G. Zhiqiang, and A.K. Hsieh, Hard chromium plating from trivalent chromium solution, Plat. Surf. Finish., 88(2001), No. 3, p. 69.

    Google Scholar 

  14. S.K. Ibrahim, D.T. Gawne, and A. Watson, Corrosion and wear resistance of thick chromium deposits from acceler ated Cr (III) electrolytes, Trans. Inst. Met. Finish., 76(1998), No. 4, p. 156.

    CAS  Google Scholar 

  15. D. Thusius, Rate constants and activation parameters for the formation of monosubstituted chromium(III) complexes, Inorg. Chem., 10(1971), No. 5, p. 1106.

    Article  CAS  Google Scholar 

  16. J.H. Espenson, Formation rates of monosubstituted chromium (III) complexes in aqueous solution, Inorg. Chem., 8(1969), No. 7, p. 1554.

    Article  CAS  Google Scholar 

  17. K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, Wiley-VCH, New York, 1990, p. 14.

    Google Scholar 

  18. V.S. Protsenko and F.I. Danilov, Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds, Electrochim. Acta, 54(2009), No. 24, p. 5666.

    Article  CAS  Google Scholar 

  19. V.S. Protsenko, V.O. Gordiienko, F.I. Danilov, S.C. Kwon, M. Kim, and J.Y. Lee, Unusually high current efficiency of nanocrystalline Cr electrodeposition process from trivalent chromium bath, Surf. Eng., 27(2011), No. 9, p. 690.

    Article  CAS  Google Scholar 

  20. V.S. Protsenko, F.I. Danilov, V.O. Gordiienko, S.C. Kwon, M. Kim, and J.Y. Lee, Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath, Thin Solid Films, 520(2011), No. 1, p. 380.

    Article  CAS  Google Scholar 

  21. N. Van Phuong, S.C. Kwon, J.Y. Lee, J.H. Lee, and K.H. Lee, The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium, Surf. Coat. Technol., 206(2012), No. 21, p. 4349.

    Article  CAS  Google Scholar 

  22. B. Li, A. Lin, X. Wu, Y.M. Zhang, and F.X. Gan, Electrodeposition and characterization of Fe-Cr-P amorphous alloys from trivalent chromium sulfate electrolyte, J. Alloys Compd., 453(2008), No. 1–2, p. 93.

    Article  CAS  Google Scholar 

  23. Z.X. Zeng, A.M. Liang, and J.Y. Zhang, Electrochemical corrosion behavior of chromium-phosphorus coatings electrodeposited from trivalent chromium baths, Electrochim. Acta, 53(2008), No. 24, p. 7344.

    Article  CAS  Google Scholar 

  24. S. Survilienė, O. Nivinskienė, A. Češunienė, and A. Selskis, Effect of Cr (III) solution chemistry on electrodeposition of chromium, J. Appl. Electrochem., 36(2006), No. 6, p. 649.

    Article  Google Scholar 

  25. H. Jiang, Metallurgical Electrochemistry, Metallurgical Industry Press, Beijing, 1983, p. 114.

    Google Scholar 

  26. V.S. Protsenko, V.O. Gordiienko, and F.I. Danilov, Unusual ‘chemical’ mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath, Electrochem. Commun., 17(2012), p. 85.

    Article  CAS  Google Scholar 

  27. Y.F. Li, Y.M. Gao, B. Xiao, T. Min, Y. Yang, S.Q. Ma, and D.W. Yi, The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations, J. Alloys Compd., 509(2011), No. 17, p. 5242.

    Article  CAS  Google Scholar 

  28. M. Andersson, J. Högström, S. Urbonaite, A. Furlan, L. Nyholm, and U. Jansson, Deposition and characterization of magnetron sputtered amorphous Cr-C films, Vacuum, 86(2012), No. 9, p. 1408.

    Article  CAS  Google Scholar 

  29. A.M. Liang and J.Y. Zhang, Why the decorative chromium coating electrodeposited from trivalent chromium electrolyte containing formic acid is darker, Surf. Coat. Technol., 206(2012), No. 17, p. 3614.

    Article  CAS  Google Scholar 

  30. G. Saravanan and S. Mohan, Structure, current efficiency, and corrosion properties of brush electrodeposited (BED) Cr from Cr(III)dimethyl formamide (DMF)-bath, J. Appl. Electrochem., 40(2010), No. 1, p. 1.

    Article  CAS  Google Scholar 

  31. V.V. Kuznetsov, E.G. Vinokurov, and V.N. Kudryavtsev, Kinetics of electroreduction of Cr3+ ions in sulfate solutions, Russ. J. Electrochem., 37(2001), No. 7, p. 699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wang, Z., Wang, My. et al. Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition. Int J Miner Metall Mater 20, 902–908 (2013). https://doi.org/10.1007/s12613-013-0813-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0813-5

Keywords

Navigation