Skip to main content
Log in

Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The effects of annealing time and temperature on the retained austenite content and mechanical properties of 0.2C–7Mn steel were studied. The retained austenite content of 0.2C–7Mn steel was compared with that of 0.2C–5Mn steel. It is found that 0.2C–7Mn steel exhibits a similar variation trend of retained austenite content as 0.2C–5Mn steel. However, in detail, these trends are different. 0.2C–7Mn steel contains approximately 7.5vol% retained austenite after austenitization and quenching. The stability of the reversed austenite in 0.2C–7Mn steel is lower than that in 0.2C–5Mn steel; in contrast, the equilibrium reversed austenite fraction of 0.2C–7Mn steel is substantially greater than that of 0.2C–5Mn steel. Therefore, the retained austenite content in 0.2C–7Mn steel reaches 53.1vol%. The tensile results show that long annealing time and high annealing temperature may not favor the enhancement of mechanical properties of 0.2C–7Mn steel. The effect of retained austenite on the tensile strength of the steel depends on the content of retained austenite; in contrast, the 0.2% yield strength linearly decreases with increasing retained austenite content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sugimoto, T. Iida, J. Sakaguchi, and T. Kashima, Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel, ISIJ Int., 40(2000), No. 9, p. 902.

    Article  Google Scholar 

  2. K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, Effects of volume fraction and stability of retained austenite on ductility of trip-aided dual-phase steels, ISIJ Int., 32(1992), No. 12, p. 1311.

    Article  Google Scholar 

  3. Y. Sakuma, O. Matsumura, and H. Takechi, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions, Metall. Trans. A, 22(1991), No. 2, p. 489.

    Article  Google Scholar 

  4. Y.G. Zhang, Y.L. Chen, H.B. Wu, A.M. Zhao, G.M. Liu, and A.M. Xiong, Influence of isothermal transformation temperature on microstructure and mechanical properties of C–Si–Mn TRIP steel, J. Iron Steel Res., 20(2008), No. 5, p. 33.

    Google Scholar 

  5. A.K. Srivastava, G. Jha, N. Gope, and S.B. Singh, Effect of heat treatment on microstructure and mechanical properties of cold rolled C–Mn–Si TRIP-aided steel, Mater. Charact., 57(2006), No. 2, p. 127.

    Article  Google Scholar 

  6. R. Zhu, S. Li, M. Song, I. Karaman, and R. Arroyave, Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels, Mater. Sci. Eng. A, 569(2013), p. 137.

    Article  Google Scholar 

  7. J. Zrnik, O. Stejskal, Z. Novy, and P. Hornak, Relationship of microstructure and mechanical properties of TRIP-aided steel processed by press forging, J. Mater. Process. Technol., 192-193(2007), p. 367.

    Article  Google Scholar 

  8. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels, Acta Mater., 57(2009), No. 2, p. 533.

    Article  Google Scholar 

  9. K. Ahn, D. Yoo, M.H. Seo, S.H. Park, and K. Chung, Springback prediction of TWIP automotive sheets, Met. Mater. Int., 15(2009), No. 4, p. 637.

    Article  Google Scholar 

  10. K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, M.H. Seo, and S.H. Park, Formability of TWIP (twinning induced plasticity) automotive sheets, Int. J. Plast., 27(2011), No. 1, p. 52.

    Article  Google Scholar 

  11. S. Allain, J.P. Chateau, and O. Bouaziz, A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel, Mater. Sci. Eng. A, 387-389(2004), p. 143.

    Article  Google Scholar 

  12. O. Bouaziz, S. Allan, and C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Mater., 58(2008), No. 6, p. 484.

    Article  Google Scholar 

  13. D.S. Leem, Y.D. Lee, J.H. Jun, and C.S. Choi, Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel, Scripta Mater., 45(2001), No. 7, p. 767.

    Article  Google Scholar 

  14. K.P. Balan, R.A. Venugopal, and D.S. Sarma, Austenite precipitation during tempering in 16Cr–2Ni martensitic stainless steels, Scripta Mater., 39(1998), No. 7, p. 901.

    Article  Google Scholar 

  15. N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano, Temperature dependence of austenite nucleation behavior from lath martensite, ISIJ Int., 51(2011), No. 2, p. 299.

    Article  Google Scholar 

  16. A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges, Evolution of microstructure and mechanical properties of medium Mn steels during double annealing, Mater. Sci. Eng. A, 542(2012), p. 31.

    Article  Google Scholar 

  17. M.J. Merwin, Low-carbon manganese TRIP steels, Mater. Sci. Forum, 539-543(2007), p. 4327.

    Article  Google Scholar 

  18. J. Shi, W.Q. Cao, and H. Dong, Ultrafine grained high strength low alloy steel with high strength and high ductility, Mater. Sci. Forum, 654-656(2010), p. 238.

    Article  Google Scholar 

  19. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, and W.Q. Cao, Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing, ISIJ Int., 51(2011), No. 4, p. 651.

    Article  Google Scholar 

  20. J Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite, Scripta Mater., 63(2010), No. 8, p. 815.

    Article  Google Scholar 

  21. C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, and Y.Q. Weng, Effect of annealing temperature and time on microstructure evolution of 0.2C–5Mn steel during intercritical annealing process, Mater. Sci. Technol., 30(2014), No. 7, p. 791.

    Article  Google Scholar 

  22. J. Mahieu, B.C. De Cooman, and J. Maki, Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel, Metall. Mater. Trans. A, 33(2002), No. 8, p. 2573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhang, C., Cao, Wq. et al. Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing. Int J Miner Metall Mater 23, 161–167 (2016). https://doi.org/10.1007/s12613-016-1223-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1223-2

Keywords

Navigation