Skip to main content
Log in

Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere (DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: a Design Guide, Butterworth-Heinemann, Massachusetts, 2000, p. 12.

    Google Scholar 

  2. H.P. Degischer and B. Kriszt, Handbook of Cellular Metals, Production, Processing and Applications, Wiley-VCH Verlag GmbH, Germany, Weinheim, 2002, p. 75.

    Book  Google Scholar 

  3. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46(2001), No. 6, p. 559.

    Article  Google Scholar 

  4. B.P. Neville and A. Rabiei, Composite metal foams processed through powder metallurgy, Mater. Des., 29(2008), No. 2, p. 388.

    Article  Google Scholar 

  5. V.C. Srivastava and K.L. Sahoo, Processing, stabilization and applications of metallic foams. Art of science, Mater. Sci. Poland, 25(2007), No. 3, p. 735.

    Google Scholar 

  6. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999, p. 8.

    Google Scholar 

  7. A. Rabiei, A.T. O’Neill, and B.P. Neville, Processing and development of a new high strength metal foam, [in] 2004 MRS Fall Meeting, 2004, p. 517.

    Google Scholar 

  8. W. Pannert, R. Winkler, and M. Merkel, On the acoustical properties of metallic hollow sphere structures (MHSS), Mater. Lett., 63(2009), No. 13-14, p. 1121.

    Article  Google Scholar 

  9. U. Waag, L. Schneider, P.A. Löthman, and G. Stephani, Metallic hollow spheres materials for the future, Met. Powder Rep., 55(2000), No. 1, p. 29.

    Article  Google Scholar 

  10. M. Amirjan, H. Khorsand, and M. Khorasani, Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1146.

    Article  Google Scholar 

  11. A. Rabiei and L.J. Vendra, A comparison of composite metal foam’s properties and other comparable metal foams, Mater. Lett., 63(2009), No. 5, p. 533.

    Article  Google Scholar 

  12. A. Rabiei and V.H. Hammond, A study on dynamic properties of composite metal foams, [in] Army Research Laboratory, Aberdeen Proving Ground, Maryland, 2012.

    Google Scholar 

  13. A. Rabiei, B. Neville, N. Reese, and L. Vendra, New composite metal foams under compressive cyclic loadings, Mater. Sci. Forum, 539-543(2007), p. 1868.

    Article  Google Scholar 

  14. A. Rabiei and A.T. O’Neill, A study on processing of a composite metal foam via casting, Mater. Sci. Eng. A, 404(2005), No. 1-2, p. 159.

    Article  Google Scholar 

  15. A. Rabiei, L. Vendra, N. Reese, N. Young, and B.P. Neville, Processing and characterization of a new composite metal foam, Mater. Trans. JIM, 47(2006), No. 9, p. 2148.

    Article  Google Scholar 

  16. Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High strain rate behavior of composite metal foams, Mater. Sci. Eng. A, 631(2015), p. 248.

    Article  Google Scholar 

  17. W. Yu, M.J. Xin, X. Liang, H.J. Li, Numerical investigation into effective elastic constants of MHS/EP composite, J. Mater. Eng. Perform., 21(2012), No. 10, p. 2038.

    Article  Google Scholar 

  18. C. Augustin and W. Hungerbach, Production of hollow spheres (HS) and hollow sphere structures (HSS), Mater. Lett., 63(2009), No. 13-14, p. 1109.

    Article  Google Scholar 

  19. T.J. Lim, B. Smith, and D.L. McDowell, Behavior of a random hollow sphere metal foam, Acta Mater., 50(2002), No. 11, p. 2867.

    Article  Google Scholar 

  20. M. Jaeckel and H. Smigilski, Coating of Polymeric Spheres with Particles, European Patent, DE 3724156, 1988.

    Google Scholar 

  21. M. Behnam, A.S. Golezani, and M.M. Lima, Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy, Powder Technol., 235(2013), p. 1025.

    Article  Google Scholar 

  22. M. Behnam, A.S. Golezani, and M.M. Lima, The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres, Powder Metall. Prog., 11(2011), No. 3-4, p. 185.

    Google Scholar 

  23. M. Šupicová, R. Orináková, M. Kupková, and M. Kabátová, Electrolytical modification of Fe hollow spheres by Cu, Ni and Ni–Cu binary coatings, Surf. Coat. Technol., 195(2005), No. 2-3, p. 130.

    Article  Google Scholar 

  24. O. Andersen, U. Waag, L. Schneider, G. Stephani, and B. Kieback, Novel metallic hollow sphere structures, Adv. Eng. Mater., 2(2000), No. 4, p. 192.

    Article  Google Scholar 

  25. J.M. Koo, H. Araki, and S.B. Jung, Effect of Zn addition on mechanical properties of brass hollow spheres, Mater. Sci. Eng. A, 483-484(2008), p. 254.

    Article  Google Scholar 

  26. Y.D. Deng, L. Zhao, L. Liu, B. Shen, and W.B. Hu, Submicrometer-sized hollow nickel spheres synthesized by autocatalytic reduction, Mater. Res. Bull., 40(2005), No. 10, p. 1864.

    Article  Google Scholar 

  27. A. Rabiei and M. Garcia-Avila, Effect of various parameters on properties of composite steel foams under variety of loading rates, Mater. Sci. Eng. A, 564(2013), p. 539.

    Article  Google Scholar 

  28. L.J. Vendra and A. Rabiei, A study on Al–steel composite metal foam processed by casting, Mater. Sci. Eng. A, 465(2007), No. 1-2, p. 59.

    Article  Google Scholar 

  29. L.J. Vendra, J.A. Brown, and A. Rabiei, Effect of processing parameters on the microstructure and mechanical properties of Al–steel composite foam, J. Mater. Sci., 46(2011), No. 13, p. 4574.

    Article  Google Scholar 

  30. F. Bretschneider, B. Peter, and J. Brucker, Machine and Process for Producing a Free Flowing Product with a Coat, German Patent, DE 197 50 042 C2, 1999.

    Google Scholar 

  31. W.D. Wong-Angel, L. Téllez-Jurado, J.F. Chávez-Alcalá, E. Chavira-Martínez, and V.F. Verduzco-Cedeño, Effect of copper on the mechanical properties of alloys formed by powder metallurgy, Mater. Des., 58(2014), p. 12.

    Article  Google Scholar 

  32. A. Simchi, Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process, Mater. Lett., 62(2008), No. 17-18, p. 2840.

    Article  Google Scholar 

  33. M. Kazemi, A.R. Kiani-Rashid, and A. Nourian, Impact toughness and microstructure of continuous medium carbon steel bar-reinforced cast iron composite, Mater. Sci. Eng. A, 559(2013), p. 135.

    Article  Google Scholar 

  34. M. Kazemi, A.R. Kiani-Rashid, A. Nourian, and A. Babakhani, Investigation of microstructural and mechanical properties of austempered steel bar-reinforced ductile cast iron composite, Mater. Des., 53(2014), p. 1047.

    Article  Google Scholar 

  35. M. Górny and E. Tyrala, Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings, J. Mater. Eng. Perform., 22(2013), No. 1, p. 300.

    Article  Google Scholar 

  36. F. Binczyk, A. Kowalski, and J. Furmanek, The effect of cooling rate on the microstructure of nodular cast iron, Arch. Foundry Eng., 7(2007), No. 2, p. 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali-Reza Kiani-Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazegaran, H., Kiani-Rashid, AR. & Khaki, J.V. Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams. Int J Miner Metall Mater 23, 676–682 (2016). https://doi.org/10.1007/s12613-016-1280-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1280-6

Keywords

Navigation