Skip to main content
Log in

Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The viscosity of CaF2–CaO–Al2O3–MgO–(TiO2) slag was measured using a rotating crucible viscometer. Raman spectroscopy analysis was performed to correlate the viscosity to slag structure. The viscosity of the slag was found to decrease with increasing TiO2 content in the slag from 0 to 9.73wt%. The activation energy decreased from 95.16 kJ/mol to 79.40 kJ/mol with increasing TiO2 content in the slag. The introduction of TiO2 into the slag played a destructive role in Al–O–Al structural units and Q4 units by forming simpler structural units of Q2 and Ti2O6 4− chain. The amount of Al–O–Al significantly decreased with increasing TiO2 content. The relative fraction of Q4 units in the [AlO4]5−-tetrahedral units shows a decreasing trend, whereas the relative fraction of Q2 units and Ti2O6 4− chain increases with increasing TiO2 content accordingly. Consequently, the polymerization degree of the slag decreases with increasing TiO2 content. The variation in slag structure is consistent with the change in measured viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwerdtfeger, W. Wepner, and G. Pateisky, Modelling of chemical reactions occurring during electroslag remelting: oxidation of titanium in stainless steel, Ironmaking Steelmaking, 5(1978), No. 3, p. 135.

    Google Scholar 

  2. Z.X. Xue, Y.X. Zheng, F. Jiang, Y.Q. Du, B.S. Guo, P. Lin, and C.B. Shi, Control of the surface quality and as-cast ingot and Ti loss during drawing-ingot-type electroslag rapid remelting of alloy 825, Spec. Steel, 37(2016), No. 4, p. 37.

    Google Scholar 

  3. X.C. Lu, Effect of titanium on surface formability of ESR super alloy ingot, Foundry, 51(2002), No. 6, p. 378.

    Google Scholar 

  4. C.B. Shi, J. Li, J.W. Cho, F. Jiang, and I.H. Jung, Effect of SiO2 on the crystallization behaviors and in-mold performance of CaF2−CaO−Al2O3 slags for drawing-ingot-type electroslag remelting, Metall. Mater. Trans. B, 46(2015), No. 5, p. 2110.

    Article  Google Scholar 

  5. K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang, Investigation of the viscosity and structural properties of CaO–SiO2–TiO2 slags, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1389.

    Article  Google Scholar 

  6. H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.

    Article  Google Scholar 

  7. S.F. Zhang, X. Zhang, C.G. Bai, L.Y. Wen, and X.W. Lv, Effect of TiO2 content on the structure of CaO–SiO2–TiO2 system by molecular dynamics simulation, ISIJ Int., 53(2013), No. 7, p. 1131.

    Article  Google Scholar 

  8. J.L. Li, Q.F. Shu, and K.C. Chou, Effect of TiO2 addition on viscosity and structure of CaO–Al2O3 based mold fluxes for high Al steel casting, Can. Metall. Q., 54(2015), No. 1, p. 85.

    Article  Google Scholar 

  9. J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Influence of TiO2 and basicity on viscosity of Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 133.

    Article  Google Scholar 

  10. S.H. Shin, J.W. Cho, and S.H. Kim, Controlling the shear thinning property of calcium silicate melts by addition of Si3N4, J. Non Cryst. Solids, 423-424(2015), p. 45.

    Article  Google Scholar 

  11. S.H. Shin, D.W. Yoon, J.W. Cho, and S.H. Kim, Controlling shear thinning property of lime silica based mold flux system with borate additive at 1623 K, J. Non Cryst. Solids, 425(2015), p. 83.

    Article  Google Scholar 

  12. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Experimental investigation of the viscosities in CaO–SiO2–MgO–Al2O3 and CaO–SiO2–MgO–Al2O3–TiO2 slags, Metall. Mater. Trans. B, 38(2007), No. 6, p. 911.

    Article  Google Scholar 

  13. Z. Wang, Q.F. Shu, and K.C. Chou, Viscosity of fluoride-free mold fluxes containing B2O3 and TiO2, Steel Res. Int., 84(2013), No. 8, p. 766.

    Article  Google Scholar 

  14. N. Saito, N. Hori, K. Nakashima, and K. Mori, Viscosity of blast furnace type slags, Metall. Mater. Trans. B, 34(2003), No. 5, p. 509.

    Article  Google Scholar 

  15. Y.L. Zhen, G.H. Zhang, and K.C. Chou, Influence of Al2O3/TiO2 ratio on viscosities and structure of CaO–MgO–Al2O3–SiO2–TiO2 melts, ISIJ Int., 54(2014), No. 4, p. 985.

    Article  Google Scholar 

  16. Y. Sun, K. Zheng, J. Liao, X. Wang, and Z. Zhang, Effect of P2O5 addition on the viscosity and structure of titanium bearing blast furnace slags, ISIJ Int., 54(2014), No. 7, p. 1491.

    Article  Google Scholar 

  17. A. Ohno and H.U. Ross, Optimum slag composition for the blast-furnace smelting of titaniferous ores, Can. Metall. Q., (1963), No. 3, p. 259.

    Article  Google Scholar 

  18. Y.H. Gao, L.T. Bian, and Z.Y. Liang, Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag, Steel Res. Int., 86(2015), No. 4, p. 386.

    Article  Google Scholar 

  19. H. Kim and I. Sohn, Effect of CaF2 and Li2O additives on the viscosity of CaO–SiO2–Na2O slags, ISIJ Int., 51(2011), No. 1, p. 1.

    Article  Google Scholar 

  20. Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353.

    Article  Google Scholar 

  21. H. Kim and I. Sohn, Influence of Li2O on the viscous behavior of CaO–Al2O3–12mass%Na2O–12 mass% CaF2 based slags, ISIJ Int., 52(2012), No. 1, p. 68.

    Article  Google Scholar 

  22. B. Mysen and D. Neuville, Effect of temperature and TiO2 content on the structure of Na2Si2O5–Na2Ti2O5 melts and glasses, Geochim. Cosmochim. Acta, 59(1995), No. 2, p. 325.

    Article  Google Scholar 

  23. B. Reynard and S.L. Webb, High-temperature Raman spectroscopy of Na2TiSi2O7 glass and melt: coordination of Ti4+ and nature of the configurational changes in the liquid, Eur. J. Mineral., 10(1998), No. 1, p. 49.

    Article  Google Scholar 

  24. G.S. Henderson and M.E. Fleet, The structure of Ti silicate glasses by micro-Raman spectroscopy, Can. Mineral., 33(1995), p. 399.

    Google Scholar 

  25. K. Zheng, J.L Liao, X.D. Wang, and Z.T. Zhang, Raman spectroscopic study of the structural properties of CaO–MgO–SiO2–TiO2 slags, J. Non Cryst. Solids, 376(2013), No. 10, p. 209.

    Article  Google Scholar 

  26. G.H. Kim and I. Sohn, Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2, J. Non Cryst. Solids, 358(2012), No. 12-13, p. 1530.

    Article  Google Scholar 

  27. H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, and D.J. Min, Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate based slags containing 10 mass pct MgO, Metall. Mater. Trans. B, 44(2013), No. 1, p. 5.

    Article  Google Scholar 

  28. Y. Sun, J. Liao, K. Zheng, X. Wang, and Z. Zhang, Effect of B2O3 on the structure and viscous behavior of Ti-bearing blast furnace slags, JOM, 66(2014), No. 10, p. 2168.

    Article  Google Scholar 

  29. P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non Cryst. Solids, 55(1983), No. 2, p. 221.

    Article  Google Scholar 

  30. M. Licheron, V. Montouillout, F. Millot, and D.R. Neuville, Raman and 27Al NMR structure investigations of aluminate glasses: (1−x) Al2O3–xMO, with M = Ca, Sr, Ba and 0.5 < x < 0.75, J. Non Cryst. Solids, 357(2011), No. 15, p. 2796.

    Article  Google Scholar 

  31. P.L. Higby, R.J. Ginther, I.D. Aggarwal, and E.J. Friebele, Glass formation and thermal properties of low-silica calcium aluminosilicate glasses, J. Non Cryst. Solids, 126(1990), No. 3, p. 209.

    Article  Google Scholar 

  32. T.S. Kim and J.H. Park, Structure-viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031.

    Article  Google Scholar 

  33. G.H. Kim, C.S. Kim, and I. Sohn, Viscous behavior of alumina rich calcium-silicate based mold fluxes and its correlation to the melt structure, ISIJ Int., 53(2013), No. 1, p. 170.

    Article  Google Scholar 

  34. D.R. Neuville, L. Cormier, and D. Massiot, Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta, 68(2004), No. 24, p. 5071.

    Article  Google Scholar 

  35. D.R. Neuville, G.S. Henderson, L. Cormier, and D. Massiot, The structure of crystals, glasses, and melts along the CaO–Al2O3 join: results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy, Am. Mineral., 95(2015), No. 10, p. 1580.

    Article  Google Scholar 

  36. B.O. Mysen, F.J. Ryerson, and D. Virgo, The influence of TiO2 on the structure and derivative properties of silicate melts, Am. Mineral., 65(1980), p. 1150.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-15-010A2), and China Postdoctoral Science Foundation (Grant No. 2016T90035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-bin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Cb., Zheng, Dl., Shin, Sh. et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater 24, 18–24 (2017). https://doi.org/10.1007/s12613-017-1374-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1374-9

Keywords

Navigation