Skip to main content
Log in

One-pot synthesis and optical properties of In- and Sn-doped ZnO nanoparticles

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Colloidal indium-doped zinc oxide (IZO) and tin-doped zinc oxide (ZTO) nanoparticles were successfully prepared in organic solution, with metal acetylacetonate as the precursor and oleylamine as the solvent. The crystal and optical properties were characterized by X-ray diffraction, UV−visible spectrophotometry, and fluorescence spectroscopy, respectively; the surface and structure morphologies were observed by scanning electron microscopy and transmission electron microscopy. The XRD patterns of the IZO and ZTO nanoparticles all exhibited similar diffraction peaks consistent with the standard XRD pattern of ZnO, although the diffraction peaks of the IZO and ZTO nanoparticles were slightly shifted with increasing dopant concentration. With increasing dopant concentration, the fluorescent emission peaks of the IZO nanoparticles exhibited an obvious red shift because of the difference in atomic radii of indium and zinc, whereas those of the ZTO nanoparticles exhibited almost no shift because of the similarity in atomic radii of tin and zinc. Furthermore, the sizes of the IZO and ZTO nanoparticles distributed in the ranges 20–40 and 20–25 nm, respectively, which is attributed to the difference in ionic radii of indium and tin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 1982, 15.

    Google Scholar 

  2. S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf, and G. Lucovsky, Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry, J. Appl. Phys., 91(2002), No. 7, p. 4500.

    Article  Google Scholar 

  3. E. Monroy, F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol., 18(2003), No. 4, p. R33.

    Article  Google Scholar 

  4. O.N. Mryasov and A.J. Freeman, Electronic band structure of indium tin oxide and criteria for transparent conducting behavior, Phys. Rev. B, 64(2001), No. 23, article No. 233111.

    Google Scholar 

  5. R.J. Stirn and Y.C.M. Yeh, Technology of GaAs metal-oxide-semiconductor solar cells, IEEE Trans. Electron Devices, 24(1977), No. 4, p. 476.

    Article  Google Scholar 

  6. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arkawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energy Mater. Sol. Cells, 64(2000), No. 2, p. 115.

    Article  Google Scholar 

  7. M. Kulakci, U. Serincan, and R. Turan, Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation, Semicond. Sci. Technol., 21(2006), No. 12, p. 1527.

    Article  Google Scholar 

  8. K. Natori, Ballistic metal-oxide-semiconductor field effect transistor, J. Appl. Phys., 76(1994), No. 8, p. 4879.

    Article  Google Scholar 

  9. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler, High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, Appl. Phys. Lett., 86(2005), No. 1, article No. 013503.

    Google Scholar 

  10. Y.L. Zhao, G.F. Dong, L. Duan, J. Qiao, D.Q. Zhang, L.D. Wang, and Y. Qiu, Impacts of Sn precursors on solution-processed amorphous zinc−tin oxide films and their transistors, RSC Adv., 2(2012), No. 12, p. 5307.

    Article  Google Scholar 

  11. J. Socratous, K.K. Banger, Y. Vaynzof, A. Sandhanala, A.D. Brown, A. Sepe, U. Steiner, and H. Sirringhaus, Electronic structure of low-temperature solution-processed amorphous metal oxide semiconductors for thin-film transistor applications, Adv. Funct. Mater., 25(2015), No. 12, p. 1873.

    Article  Google Scholar 

  12. K. Domen, T. Miyase, K. Abe, H. Hosono, and T. Kamiya, Positive gate bias instability induced by diffusion of neutral hydrogen in amorphous In−Ga−Zn−O thin-film transistor, IEEE Electron Device Lett., 35(2014), No. 8, p. 832.

    Article  Google Scholar 

  13. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor, Nature, 427(2004), No. 6975, p. 615.

    Article  Google Scholar 

  14. C.T. Black, K.W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I.V. Babich, and K.R. Milkove, High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors, IEEE Electron Device Lett., 25(2004), No. 9, p. 622.

    Article  Google Scholar 

  15. S. Choi, B.C. Johnson, S. Castelletto, C. Ton-That, M.R. Phillips, and I. Aharonovich, Single photon emission from ZnO nanoparticles, Appl. Phys. Lett., 104(2014), No. 26, article No. 261101.

    Google Scholar 

  16. F. Lu, W.P. Cai, and Y.G. Zhang, ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater., 18(2008), No. 7, p. 1047.

    Article  Google Scholar 

  17. T.G. Xu, L.W. Zhang, H.Y. Cheng, and Y.F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B, 101(2011), No. 3-4, p. 382.

    Article  Google Scholar 

  18. R. Deng, Y.F. Li, B. Yao, J.M. Qin, D.Y. Jiang, X. Fang, F. Fang, Z.P. Wei, and L.L. Gao, Shallow donor ionization energy in Sn-doped ZnO nanobelts, Nanosci. Nanotechnol. Lett., 6(2014), No. 10, p. 887.

    Article  Google Scholar 

  19. S.M. Rozati, F. Zarenejad, and N. Memarian, Study on physical properties of indium-doped zinc oxide deposited by spray pyrolysis technique, Thin Solid Films, 520(2011), No. 4, p. 1259.

    Article  Google Scholar 

  20. X.L. Fu, X.X. Wang, J.L. Long, Z.X. Ding, T.J. Yan, G.Y. Zhang, Z.Z. Zhang, H.X. Lin, and X.Z. Fu, Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4, J. Solid State Chem., 182(2009), No. 3, p. 517.

    Article  Google Scholar 

  21. J.B. Shi, P.F. Wu, Y.T. Lin, C.T. Kao, C.J. Chen, F.C. Cheng, H.H. Liu, Y.C. Chen, H.S. Lin, and H.W. Lee, Synthesis and optical properties of single-crystalline indium zinc oxide (IZO) nanowires via co-deposition and oxidation methods, Vacuum, 115(2015), No. 2, p. 61.

    Article  Google Scholar 

  22. S.I. Choi, K.M. Nam, B.K. Park, W.S. Seo, and J.T. Park, Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles, Chem. Mater., 20(2008), No. 8, p. 2609.

    Article  Google Scholar 

  23. J.F. Liu, Y.Y. Bei, H.P. Wu, D. Shen, J.Z. Gong, X.G. Li, Y.W. Wang, N.P. Jiang, and J.Z. Jiang, Synthesis of relatively monodisperse ZnO nanocrystals from a precursor zinc 2, 4-pentanedionate, Mater. Lett., 61(2007), No. 13, p. 2837.

    Article  Google Scholar 

  24. J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater., 4(2005), No. 2, p. 173.

    Article  Google Scholar 

  25. T. Koida, S.F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, and H. Koinuma, Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO, Appl. Phys. Lett., 82(2003), No. 4, p. 532.

    Article  Google Scholar 

  26. D.W. Chu, Y.P. Zeng, and D.L. Jiang, Hydrothermal synthesis and optical properties of Pb2+ doped ZnO nanorods, Mater. Lett., 60(2006), No. 21-22, p. 2783.

    Article  Google Scholar 

  27. U. Holzwarth and N. Gibson, The Scherrer equation versus the “Debye−Scherrer equation,” Nat. Nanotechnol., 6(2011), No. 9, p. 534.

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21073012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Lp., Zhang, F., Chen, S. et al. One-pot synthesis and optical properties of In- and Sn-doped ZnO nanoparticles. Int J Miner Metall Mater 24, 455–461 (2017). https://doi.org/10.1007/s12613-017-1426-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1426-1

Keywords

Navigation