Skip to main content
Log in

Effects of the deep rolling process on the surface roughness and properties of an Al−3vol%SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al−3vol%SiC nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating SiC nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Atrian, G.H. Majzoobi, M.H. Enayati, and H. Bakhtiari, Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 295.

    Article  Google Scholar 

  2. A. Atrian, G.H. Majzoobi, M.H. Enayati, and H. Bakhtiari, A comparative study on hot dynamic compaction and quasi-static hot pressing of Al7075/SiCnp nanocomposite, Adv. Powder Technol., 26(2015), No. 1, p. 73.

    Article  Google Scholar 

  3. G.H. Majzoobi, A. Atrian, and M.H. Enayati, Tribological properties of Al7075-SiC nanocomposite prepared by hot dynamic compaction, Compos. Interfaces, 22(2015), No. 7, p. 579.

    Article  Google Scholar 

  4. O. El-Kady and A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des., 54(2014), p. 348.

    Article  Google Scholar 

  5. M. Jafari, M.H. Abbasi, M.H. Enayati, and F. Karimzadeh, Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods, Adv. Powder Technol., 23(2012), No. 2, p. 205.

    Article  Google Scholar 

  6. H. Ghasemi Yazdabadi, A. Ekrami, H.S. Kim, and A. Simchi, An investigation on the fatigue fracture of P/M Al-SiC nanocomposites, Metall. Mater. Trans. A, 44(2013), No. 6, p. 2662.

    Article  Google Scholar 

  7. G.H. Majzoobi, H. Bakhtiari, A. Atrian, M.K. Pipelzadeh, and S.J. Hardy, Warm dynamic compaction of Al6061/SiC nanocomposite powders, [in] Proceedings of the Institution of Mechanical Engineers Part L, 2015, p. 1.

    Google Scholar 

  8. S.A. Sajjadi, H.R. Ezatpour, and H. Beygi, Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A, 528(2011), No. 29-30, p. 8765.

    Article  Google Scholar 

  9. S.A. Sajjadi, H.R. Ezatpour, and M. Torabi Parizi, Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes, Mater. Des., 34(2012), p. 106.

    Article  Google Scholar 

  10. S.A. Sajjadi, M. Torabi Parizi, H.R. Ezatpour, and A. Sedghi, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties, J. Alloys Compd., 511(2012), No. 1, p. 226.

    Article  Google Scholar 

  11. A. Abdollahi, A. Alizadeh, and H.R. Baharvandi, Dry sliding tribological behavior and mechanical properties of Al2024–5wt.%B4C nanocomposite produced by mechanical milling and hot extrusion, Mater. Des., 55(2014), p. 471.

    Article  Google Scholar 

  12. A. Abdollahi, A. Alizadeh, and H.R. Baharvandi, Comparative studies on the microstructure and mechanical properties of bimodal and trimodal Al2024 based composites, Mater. Sci. Eng. A, 608(2014), p. 139.

    Article  Google Scholar 

  13. A. Alizadeh and E. Taheri-Nassaj, Mechanical properties and wear behavior of Al–2wt.% Cu alloy composites reinforced by B4C nanoparticles and fabricated by mechanical milling and hot extrusion, Mater. Charact., 67(2012), p. 119.

    Article  Google Scholar 

  14. A. Fathy, A. Sadoun, and M. Abdelhameed, Effect of matrix/ reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites, Int. J. Adv. Manuf. Technol., 73(2014), No. 5, p. 1049.

    Article  Google Scholar 

  15. R. Senthilkumar, N. Arunkumar, and M. Manzoor Hussian, A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites, Results Phys., 5(2015), p. 273.

    Article  Google Scholar 

  16. M. Tavoosi, S. Rizaneh, and G.H. Borhani, The effect of Al2O3–TiB2/Fe complex reinforcement on wear and mechanical properties of Al-matrix composites, Trans. Indian Inst. Met., 70(2017), No. 5, p. 1215.

    Article  Google Scholar 

  17. S. Rizaneh, G.H. Borhani, and M. Tavoosi, Synthesis and characterization of Al (Al2O3–TiB2/Fe) nanocomposite by means of mechanical alloying and hot extrusion processes, Adv. Powder Technol., 25(2014), No. 6, p. 1693.

    Article  Google Scholar 

  18. A.M. Abrão, B. Denkena, J. Köhler, B. Breidenstein, and T. Mörke, The inducement of residual stress through deep rolling of AISI 1060 steel and its subsequent relaxation under cyclic loading, Int. J. Adv. Manuf. Technol., 79(2015), No. 9, p. 1939.

    Article  Google Scholar 

  19. G.H. Majzoobi, F. Zare Jouneghani, and E. Khademi, Experimental and numerical studies on the effect of deep rolling on bending fretting fatigue resistance of Al7075, Int. J. Adv. Manuf. Technol., 82(2016), No. 9, p. 2137.

    Article  Google Scholar 

  20. I. Altenbergr, Deep rolling—the past, the present and the future, [in] Proceedings of the 9th International Conference on Shot Peening, Paris, 2005, p. 144.

    Google Scholar 

  21. G.H. Majzoobi, J. Nemati, A.J. Novin Rooz, and G.H. Farrahi, Modification of fretting fatigue behavior of AL7075–T6 alloy by the application of titanium coating using IBED technique and shot peening, Tribol. Int., 42(2009), No. 1, p. 121.

    Article  Google Scholar 

  22. Y.S. Nam, U. Jeon, H.K. Yoon, B.C. Shin, and J.H. Byun, Use of response surface methodology for shot peening process optimization of an aircraft structural part, Int. J. Adv. Manuf. Technol., 87(2016), No. 9, p. 2967.

    Article  Google Scholar 

  23. M. Beghini, L. Bertini, B.D. Monelli, C. Santus, and M. Bandini, Experimental parameter sensitivity analysis of residual stresses induced by deep rolling on 7075-T6 aluminium alloy, Surf. Coat. Technol., 254(2014), p. 175.

    Article  Google Scholar 

  24. P. Prabhu, S.M. Kulkarni, and S.S. Sharma, An experimental investigation on the effect of deep cold rolling parameters on surface roughness and hardness of AISI 4140 steel, World Acad. Sci. Eng. Technol., 60(2011), p. 1593.

    Google Scholar 

  25. P.R. Prabhu, S.M. Kulkarni, and S.S. Sharma, Experimental investigations of process parameters influence on surface roughness in deep cold rolling of AISI 4140 steel, IJRET, 1(2012), No. 3, p. 159.

    Google Scholar 

  26. R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie, On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures, Mater. Sci. Eng. A, 355(2003), No. 1-2, p. 216.

    Article  Google Scholar 

  27. M. Ebrahimi, S. Amini, and S.M. Mahdavi, The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel, Int. J. Adv. Manuf. Technol., 88(2016), No. 5, p. 1557.

    Google Scholar 

  28. M.L. Cheng, D.Y. Zhang, H.W. Chen, W. Qin, and J.S Li., Surface nanocrystallization and its effect on fatigue performance of high-strength materials treated by ultrasonic rolling process, Int. J. Adv. Manuf. Technol., 83(2016), No. 1, p. 123.

    Google Scholar 

  29. L.X. Lu, J. Sun, L. Li, and Q.C. Xiong, Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process, Int. J. Adv. Manuf. Technol., 87(2016), No. 9, p. 2533.

    Article  Google Scholar 

  30. X.L. Yuan, Y.W. Sun, C.Y. Li, and W.R. Liu, Experimental investigation into the effect of low plasticity burnishing parameters on the surface integrity of TA2, Int. J. Adv. Manuf. Technol., 88(2017), No. 1, p. 1089.

    Article  Google Scholar 

  31. X.L. Yuan, Y.W. Sun, L.S. Gao, and S.L. Jiang, Effect of roller burnishing process parameters on the surface roughness and microhardness for TA2 alloy, Int. J. Adv. Manuf. Technol., 85(2016), No. 5, p. 1373.

    Article  Google Scholar 

  32. A. Rodríguez, L.N. López de Lacalle, A. Celaya, A. Lamikiz, and J. Albizuri, Surface improvement of shafts by the deep ball-burnishing technique, Surf. Coat. Technol., 206(2012), No. 11-12, p. 2817.

    Article  Google Scholar 

  33. G.H. Majzoobi, K. Azadikhah, and J. Nemati, The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6, Mater. Sci. Eng. A, 516(2009), No. 1-2, p. 235.

    Article  Google Scholar 

  34. C.Y. Seemikeri, P.K. Brahmankar, and S.B. Mahagaonkar, Investigations on surface integrity of AISI 1045 using LPB tool, Tribol. Int., 41(2008), No. 8, p. 724.

    Article  Google Scholar 

  35. M.H. El-Axir, An investigation into roller burnishing, Int. J. Mach. Tools Manuf., 40(2000), No. 11, p. 1603.

    Article  Google Scholar 

  36. L. Luca, S. Neagu-Ventzel, and I. Marinescu, Effects of working parameters on surface finish in ball-burnishing of hardened steels, Precis. Eng., 29(2005), No. 2, p. 253.

    Article  Google Scholar 

  37. P.R. Taleghani, S.R. Bakhshi, M. Erfanmanesh, G.H. Borhani, and R. Vafaei, Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering, Powder Technol., 254(2014), p. 241.

    Article  Google Scholar 

  38. S. Kumar, Technology of Metal Forming Processes, PHI Learning, New Delhi, 2008.

    Google Scholar 

  39. A.M. Abrão, B. Denkena, B. Breidenstein, and T. Mörke, Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel, Prod. Eng., 8(2014), No. 5, p. 551.

    Article  Google Scholar 

  40. A.R.F. Pieralini, C.M. Benjamin, R.F. Ribeiro, G. Scaf, and G.L. Adabo, The effect of coating patterns with spinel-based investment on the castability and porosity of titanium cast into three phosphate-bonded investments, J. Prosthodont., 19(2010), No. 7, p. 517.

    Article  Google Scholar 

  41. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1-2, p. 1.

    Article  Google Scholar 

  42. D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Prog. Mater. Sci., 49(2004), No. 3-4, p. 537.

    Article  Google Scholar 

  43. A.R. Othman, A. Sardarinejad, and A.K. Masrom, Effect of milling parameters on mechanical alloying of aluminum powders, Int. J. Adv. Manuf. Technol., 76(2015), No. 5, p. 1319.

    Article  Google Scholar 

  44. S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al–Al2O3 nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1105.

    Article  Google Scholar 

  45. G.H. Majzoobi, A. Atrian, and M.K. Pipelzadeh, Effect of densification rate on consolidation and properties of Al7075–B4C composite powder, Powder Metall., 58(2015), No. 4, p. 281.

    Article  Google Scholar 

  46. Z. Zhang and D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scripta Mater., 54(2006), No. 7, p. 1321.

    Article  Google Scholar 

  47. J.F.W. Galyer and C.R. Shotbolt, Metrology for Engineers, Cassell, London, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Atrian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, S., Atrian, A. Effects of the deep rolling process on the surface roughness and properties of an Al−3vol%SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion. Int J Miner Metall Mater 24, 814–825 (2017). https://doi.org/10.1007/s12613-017-1465-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1465-7

Keywords

Navigation