Skip to main content
Log in

Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline powders of ZrO2–8mol%SmO1.5 (8SmSZ), ZrO2–8mol%GdO1.5 (8GdSZ), and ZrO2–8mol%YO1.5 (8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296(2002), No. 5566, p. 280.

    Article  Google Scholar 

  2. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bull., 37(2012), No. 10, p. 891.

    Article  Google Scholar 

  3. Y.L. Zhang, L. Guo, Y.P. Yang, H.B. Guo, H.J. Zhang, and S.K. Gong, Influence of Gd2O3 and Yb2O3 Co-doping on phase stability, thermo-physical properties and sintering of 8YSZ, Chin. J. Aeronaut., 25(2012), No. 6, p. 948.

    Article  Google Scholar 

  4. J. Feng, X.R. Ren, X.Y. Wang, R. Zhou, and W. Pan, Thermal conductivity of ytterbia-stabilized zirconia, Scripta Mater., 66(2012), No. 1, p. 41.

    Article  Google Scholar 

  5. L.L. Sun, H.B. Guo, H. Peng, S.K. Gong, and H.B. Xu, Influence of partial substitution of Sc2O3 with Gd2O3 on the phase stability and thermal conductivity of Sc2O3-doped ZrO2, Ceram. Int., 39(2013), No. 3, p. 3447.

    Article  Google Scholar 

  6. H.F. Liu, S.L. Li, Q.L. Li, and Y.M. Li, Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application, Mater. Des., 31(2010), No. 6, p. 2972.

    Article  Google Scholar 

  7. Q.L. Li, X.Z. Cui, S.Q. Li, W.H. Yang, C. Wang, and Q. Cao, Synthesis and phase stability of scandia, gadolinia, and ytterbia Co-doped zirconia for thermal barrier coating application, J. Therm. Spray Technol., 24(2015), No. 1, p. 136.

    Google Scholar 

  8. D.M. Zhu, Y.L. Chen, and R.A. Miller, Defect clustering and nanophase structure characterization of multi-component rare earth-oxide-doped zirconia-yttria thermal barrier coatings, Ceram. Eng. Sci. Proc., 24(2003), No. 3, p. 525.

    Article  Google Scholar 

  9. M.B. Ponnuchamy and A.S. Gandhi, Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides, J. Eur. Ceram. Soc., 35(2015), No. 6, p. 1879.

    Article  Google Scholar 

  10. Y.J. Zhou, W.H. Yuan, Q.L. Huang, W.Z. Huang, H.F. Cheng, and H.T. Liu, Effect of Y2O3 addition on the phase composition and crystal growth behavior of YSZ nanocrystals prepared via coprecipitation process, Ceram. Int., 41(2015), No. 9, p. 10702.

    Article  Google Scholar 

  11. C.W. Kuo, Y.H. Shen, I.M. Hung, S.B. Wen, H.E. Lee, and M.C. Wang, Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol–gel process, J. Alloys Compd., 472(2009), No. 1-2, p. 186.

    Article  Google Scholar 

  12. S.G. Chen, Y.S. Yin, D.P. Wang, and J. Li, Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals: an experimental and theoretical study, J. Cryst. Growth, 267(2004), No. 1-2, p. 100.

    Article  Google Scholar 

  13. Y.H. Lee, C.W. Kuo, I.M. Hung, K.Z. Fung, and M.C. Wang, The thermal behavior of 8mol% yttria-stabilized zirconia nanocrystallites prepared by a sol–gel process, J. Non-Cryst. Solids, 351(2005), No. 49, p. 3709.

    Article  Google Scholar 

  14. H.L. Chu, W.S. Hwang, J.K. Du, K.K. Chen, and M.C. Wang, Effect of SrO addition on the growth behavior of ZrO2-3Y2O3 precursor powders synthesized by a coprecipitation process, Ceram. Int., 42(2016), No. 8, p. 10251.

    Article  Google Scholar 

  15. A. Loganathan and A.S. Gandhi, Fracture toughness of t’ ZrO2 stabilised with MO1.5 (M =Y, Yb & Gd) for thermal barrier application, Trans. Indian Inst. Met., 64(2011), No. 1, p. 71.

    Article  Google Scholar 

  16. Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, and S.K. Date, Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route, Mater. Chem. Phys., 71(2001), No. 3, p. 235.

    Article  Google Scholar 

  17. Isabel Gonzalo, B. Ferrari, and M.T. Colomer, Influence of the urea content on the YSZ hydrothermal synthesis under dilute conditions and its role as dispersant agent in the post-reaction medium, J. Eur. Ceram. Soc., 29(2009), No. 15, p. 3185.

    Article  Google Scholar 

  18. Q.L. Huang, W.H. Yuan, W.Z. Huang, H.F. Cheng, Y.J. Zhou, and H.T. Liu, Effect of organic additions on the phase composition and crystal growth behavior of 8wt% yttria-stabilized zirconia nanocrystals prepared via sol–gel process, J. Sol-Gel Sci. Technol., 74(2015), No. 2, p. 432.

    Article  Google Scholar 

  19. C. Suciu, A.C. Hoffmann, A. Vik, and F. Goga, Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol–gel route, Chem. Eng. J., 138(2008), No. 1-3, p. 608.

    Article  Google Scholar 

  20. J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vázquez, A. Garcia-Ruiz, and X. Bokhimi, Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods, Catal. Today, 68(2001), No. 1-3, p. 21.

    Article  Google Scholar 

  21. P.K. Sharma, R. Nass, and H. Schmidt, Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu(III) doped yttria, Opt. Mater., 10(1998), No. 2, p. 161.

    Article  Google Scholar 

  22. K. Richardson and M. Akinc, Preparation of spherical yttrium oxide powders using emulsion evaporation, Ceram. Int., 13(1987), No. 4, p. 253.

    Article  Google Scholar 

  23. T. Lopez, E. Sanchez, P. Bosch, Y. Meas, and R. Gomez, FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol–gel, Mater. Chem. Phys., 32(1992), No. 2, p. 141.

    Article  Google Scholar 

  24. H.E. Lee, J.K. Du, Y.Y. Sie, C.H. Wang, J.H. Wu, C.L. Wang, W.S. Hwang, H.H. Huang, W.L. Li, and M.C. Wang, Thermal properties and phase transformation of 2mol% Y2O3–PSZ nanopowders prepared by a Co-precipitation process, J. Non-Cryst. Solids, 357(2011), No. 10, p. 2103.

    Article  Google Scholar 

  25. S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia, Nano Lett., 3(2003), No. 3, p. 397.

    Article  Google Scholar 

  26. S.M. Ho, On the structural chemistry of zirconium oxide, Mater. Sci. Eng., 54(1982), No. 1, p. 23.

    Article  Google Scholar 

  27. Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, and M.C. Wang, Synthesis and crystallization behavior of 3mol% yttria stabilized tetragonal zirconia polycrystals (3Y–TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd., 509(2011), No. 24, p. 6864.

    Article  Google Scholar 

  28. T. Chraska, A.H. King, and C.C. Berndt, On the size-dependent phase transformation in nanoparticulate zirconia, Mater. Sci. Eng. A, 286(2000), No. 1, p. 169.

    Article  Google Scholar 

  29. R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Ceramic steel?, Nature, 258(1975), p. 703.

    Article  Google Scholar 

  30. D.J. Kim, H.J. Jung, and I.S. Yang, Raman spectroscopy of tetragonal zirconia solid solution, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2106.

    Article  Google Scholar 

  31. L. Qu and K.L. Choy, Thermophysical and thermochemical properties of new thermal barrier materials based on Dy2O3–Y2O3 co-doped zirconia, Ceram. Int., 40(2014), No. 8, p. 11593.

    Article  Google Scholar 

  32. X.Q. Niu, M. Xie, F. Zhou, R.D. Mu, X.W. Song, and S.L. An, Substituent influence of yttria by gadolinia on the tetragonal phase stability for Y2O3–Ta2O5–ZrO2 ceramics at 1300°C, J. Mater. Sci. Technol., 30(2014), No. 4, p. 381.

    Article  Google Scholar 

  33. A.M. Limarga, J. Iveland, M. Gentleman, D.M. Lipkin, and D.R. Clarke, The use of Larson-Miller parameters to monitor the evolution of Raman lines of tetragonal zirconia with high temperature aging, Acta Mater., 59(2011), No. 3, p. 1162.

    Article  Google Scholar 

  34. C.H. Wang, M.C. Wang, J.K. Du, Y.Y. Sie, C.S. Hsi, and H.E. Lee, Phase transformation and nanocrystallite growth behavior of 2mol% yttria-partially stabilized zirconia (2Y–PSZ) powders, Ceram. Int., 39(2013), No. 5, p. 5165.

    Article  Google Scholar 

  35. C.W. Kuo, K.C. Lee, F.L. Yen, Y.H. Shen, H.E. Lee, S.B. Wen, M.C. Wang, and M.M. Stack, Growth kinetics of tetragonal and monoclinic ZrO2 crystallites in 3mol% yttria partially stabilized ZrO2 (3Y–PSZ) precursor powder, J. Alloys Compd., 592(2014), p. 288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendran, R., Kumaresh Babu, S.P., Natarajan, S. et al. Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders. Int J Miner Metall Mater 24, 842–849 (2017). https://doi.org/10.1007/s12613-017-1468-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1468-4

Keywords

Navigation