Skip to main content

Advertisement

Log in

Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, Investigation of aluminum-based nanocomposites with ultra-high strength, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 305.

    Article  Google Scholar 

  2. O. El-Kady and A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des., 54(2014), p. 348.

    Article  Google Scholar 

  3. T. Sornakumar and M. Kathiresan, Machining studies of die cast aluminum alloy–silicon carbide composites, Int. J. Miner. Metall. Mater., 17(2010), No. 5, p. 648.

    Article  Google Scholar 

  4. A. Atrian, G.H. Majzoobi, M.H. Enayati, and H. Bakhtiari, Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 295.

    Article  Google Scholar 

  5. N. Valibeygloo, R.A. Khosroshahi, and R.T. Mousavian, Microstructural and mechanical properties of Al–4.5wt% Cu reinforced with alumina nanocomposites by stir casting method, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 978.

    Article  Google Scholar 

  6. M. Karbalaei Akbari, H.R. Baharvandi, and O. Mirzaee, Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties, Composites Part B, 55(2013), p. 426.

    Article  Google Scholar 

  7. D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and R.S. Kambali, An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying, Mater. Des., 57(2014), p. 394.

    Article  Google Scholar 

  8. M.F.L.D. Volder, Sameh H. Tawfick, R.H. Baughman, and A.J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339(2013), p. 535.

    Article  Google Scholar 

  9. J. Teng, X. Zeng, X. Xu, and J.G. Yu, Assembly of a novel porous 3D graphene oxide-starch architecture by a facile hydrothermal method and its adsorption properties toward metal ions, Mater. Lett. 214(2018), p. 31.

    Article  Google Scholar 

  10. W.J. Kim and S.H. Lee, High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength, Composites Part A, 67(2014), p. 308.

    Article  Google Scholar 

  11. B. Chen, S.F. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh, Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties, J. Alloys Compd., 651(2015), p. 608.

    Article  Google Scholar 

  12. M. Sharma and V. Sharma, Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite, Int. J. Miner. Metall. Mater., 23(2016), No.2, p. 222.

    Article  Google Scholar 

  13. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 47(2009), No. 3, p. 570.

    Article  Google Scholar 

  14. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A, 626(2015), p. 400.

    Article  Google Scholar 

  15. X. Gao, H.Y. Yue, E. Guo, H. Zhang, X.Y. Lin, L.H. Yao, and B. Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites, Mater. Des., 94(2016), p. 54.

    Article  Google Scholar 

  16. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 27, p. 7933.

    Article  Google Scholar 

  17. J.Y. Wang, Z.Q. Li, G.L. Fan, H.H. Pan, Z.X. Chen, and D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Mater., 66(2012), No. 8, p. 594.

    Article  Google Scholar 

  18. S.E. Shin and D.H. Bae, Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene, Composites Part A, 78(2015), p. 42.

    Article  Google Scholar 

  19. J.H. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, and D. Brabazon, Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics, Mater. Des., 94(2016), p. 87.

    Article  Google Scholar 

  20. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon, Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process, Adv. Mater., 25(2013), No. 46, p. 6724.

    Article  Google Scholar 

  21. W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 723.

    Article  Google Scholar 

  22. Z.A. Wang, X.M. Zhang, X.W. Wu, J.G. Yu, X.Y. Jiang, Z.L. Wu, and X. Hao, Soluble starch functionalized graphene oxide as an efficient adsorbent for aqueous removal of Cd (II): The adsorption thermodynamic, kinetics and isotherms, J. Sol-Gel Sci. Technol., 82(2017), No. 2, p. 440.

    Article  Google Scholar 

  23. S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82(2015), p. 143.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51574118, 51571087, 51674292), the Natural Science Foundation of Hunan Province (No. 2015JJ4017), the Project of Innovation- driven Plan in Central South University (No. 2016CX007), and the Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Teng or Jin-gang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Teng, J., Yu, Jg. et al. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. Int J Miner Metall Mater 25, 102–109 (2018). https://doi.org/10.1007/s12613-018-1552-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1552-4

Keywords

Navigation