Skip to main content
Log in

Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Ti2AlNb-based alloys with 0.0wt%, 0.6wt%, and 2.0wt% carbon nanotube (CNT) addition were fabricated from spherical Ti–22Al–25Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050°C were identified as TiC and facilitated the transformation of α2 + B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2 + O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0wt% CNT addition increased to HV 429 ± 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844.

    Article  Google Scholar 

  2. A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 909.

    Article  Google Scholar 

  3. Y.Y. Zong, B. Shao, Y.T. Tian, and D.B. Shan, A study of the sharp yield point of a Ti–22Al–25Nb alloy, J. Alloys Compd., 701(2017), p. 727.

    Article  Google Scholar 

  4. X. Lu, L.H. Zhao, L.P. Zhu, B. Zhang, and X.H. Qu, High-temperature mechanical properties and deformation behavior of high Nb containing TiAl alloys fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 354.

    Article  Google Scholar 

  5. H.B. Feng, D.C. Jia, and Y. Zhou, Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites, Composites Part A, 36(2005), No. 5, p. 558.

    Article  Google Scholar 

  6. S. Ranganath and R.S. Mishra, Steady state creep behaviour of particulate-reinforced titanium matrix composites, Acta Mater., 44(1996), No. 3, p. 927.

    Article  Google Scholar 

  7. Y.Y. Liu, Z.K. Yao, H.Z. Guo, and H.H. Yang, Microstructure and property of the Ti–24Al–15Nb–1.5 Mo/TC11 joint welded by electron beam welding, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p.568.

    Article  Google Scholar 

  8. H.B. Yang, T. Gao, H.C. Wang, J.F. Nie, and X.F Liu, Influence of C/Ti stoichiometry in TiCx on the grain refinement efficiency of Al–Ti–C master alloy, J. Mater. Sci. Technol., 33(2017), No. 7, p. 616.

    Article  Google Scholar 

  9. S.C. Tjong and Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R, 29(2000), No. 3-4, p. 49.

    Article  Google Scholar 

  10. B. Ghosh and S.K. Pradhan, Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying, Mater. Chem. Phys., 120(2010), No. 2-3, p. 537.

    Article  Google Scholar 

  11. M. Razavi, M.R. Rahimipour, and A.H. Rajabi-Zamani, Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron, Mater. Sci. Eng. A, 454-455(2007), p. 144.

    Article  Google Scholar 

  12. E. Zhang, S.Y. Zeng, and B. Wang, Preparation and microstructure of in situ particle reinforced titanium matrix alloy, J. Mater. Process. Technol., 125-126(2002), p. 103.

    Article  Google Scholar 

  13. I.A.M. Arif, M.K. Talari, A.L. Anis, M.H. Ismail, and N.K. Babu, Grain refinement, microstructural and hardness investigation of C added Ti–15–3 Alloys prepared by argon arc melting, Trans. Indian Inst. Met., 70(2017), No. 3, p. 861.

    Article  Google Scholar 

  14. R. Sarkar, P. Ghosal, K. Muraleedharan, T.K. Nandy, and K.K. Ray, Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4819.

    Article  Google Scholar 

  15. R. Banoth, R. Sarkar, A. Bhattacharjee, T.K. Nandy, and G. V.S.N Rao, Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys, Mater. Des., 67(2015), p. 50.

    Article  Google Scholar 

  16. N.K. Babu, K. Kallip, M. Leparoux, M.K. Talari, K.A. Alogab, and N.M. Alqahtani, Phase evolution during high energy cube milling of Ti–6Al–4V0.5 vol% TiC powders using heptane and tin as process control agents (PCAs), Adv. Eng. Mater., 19(2017), No. 2, art. No. 1600662.

  17. Q.M. Wang, K. Zhang, J. Gong, Y.Y. Cui, C. Sun, and L.S. Wen, NiCoCrAlY coatings with and without an Al2O3/Al interlayer on an orthorhombic Ti2AlNb-based alloy: Oxidation and interdiffusion behaviors, Acta Mater., 55(2007), No. 4, p.1427.

  18. H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Effect of oxygen on the microstructure and mechanical properties of Ti–23Nb–0.7Ta–2Zr alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1128

    Article  Google Scholar 

  19. H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot deformation behavior of Ti–22Al–25Nb alloy by processing maps and kinetic analysis, J. Mater. Res., 31(2016), No. 12, p. 1764.

    Article  Google Scholar 

  20. B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, and D.B. Shan, Investigation of the phase transformations in Ti–22Al–25Nb alloy, Mater. Charact., 114(2016), p. 75.

    Article  Google Scholar 

  21. Y.C. Liu, F. Lan, G.C. Yang, and Y.H. Zhu, Microstructural evolution of rapidly solidified Ti–Al peritectic alloy, J. Cryst. Growth, 271(2004), No. 1-2, p. 313.

    Article  Google Scholar 

  22. C.J. Cowen and C.J. Boehlert, Comparison of the microstructure, tensile, and creep behavior for Ti–22Al–26Nb (at. pct) and Ti–22Al–26Nb–5B (at. pct), Metall. Mater. Trans. A, 38(2007), No. 1, p. 26.

    Article  Google Scholar 

  23. T.K. Nandy, R.S. Mishra, and D. Banerjee, Creep behaviour of an orthorhombic phase in a Ti–Al–Nb alloy, Scripta Met. Mater., 28(1993), No. 5, p. 569.

    Article  Google Scholar 

  24. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The microstructural evolution in Ti–Al–Nb O + BCC orthorhombic alloys, Metall, Mater. Trans. A, 30(1999), No. 9, p. 2305.

    Article  Google Scholar 

  25. I.W. Hall and C.Y. Ni, Thermal stability of an SCS-6/Ti–22Al–23Nb composite, Mater. Sci. Eng. A, 192-193(1995), p. 987.

    Article  Google Scholar 

  26. Y.Q. Yang, Y. Zhu, Z.J. Ma, and Y. Chen, Formation of interfacial reaction products in SCS-6SiC/Ti2AlNb composites, Scripta Mater., 51(2004), No. 5, p. 385.

    Article  Google Scholar 

  27. X. Luo, Y.Q. Wang, Y.Q. Yang, M.X. Zhang, B. Huang, S. Liu, and N. Jin, Effect of C/Mo duplex coating on the interface and tensile strength of SiCf/Ti–21Al–29Nb composites, J. Alloys Compd., 721(2017), p. 653.

    Article  Google Scholar 

  28. P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. Wheeler, Review AP/M approach for the fabrication of an orthorhombic titanium aluminide for MMC applications, J. Mater. Sci., 35(2000), No. 13, p. 3169.

    Article  Google Scholar 

  29. J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure design and heat response of powder metallurgy Ti2AlNb alloys, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1251.

    Article  Google Scholar 

  30. P. Davies, R. Pederson, M. Coleman, and S. Birosca, The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air, Acta Mater., 117(2016), p. 51.

    Article  Google Scholar 

  31. S. Gorsse, Y. L. Petitcorps, S. Matar, and F. Rebillat, Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite, Mater. Sci. Eng. A, 340(2003), No. 1-2, p. 80.

    Article  Google Scholar 

  32. H. Feng, D. Jia, and Y. Zhou, Influence factors of ball milling process on BE powder for reaction sintering of TiB/Ti-4.0Fe-7.3Mo composite, J. Mater. Process. Technol., 182(2007), No. 1-2, p. 79.

    Article  Google Scholar 

  33. H.Z. Niu, Y.F. Chen, D.L. Zhang, Y.S. Zhang, J.W. Lu, W. Zhang, and P.X. Zhang, Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization, Mater. Des., 89(2016), p. 823.

    Article  Google Scholar 

  34. M. Li, Q. Cai, Y.C. Liu, Z.Q. Ma, Z.M. Wang, Y. Huang, and J.X. Yu, Dual structure O + B2 for enhancement of hardness in furnace-cooled Ti2AlNb-based alloys by powder metallurgy, Adv. Powder Technol., 28(2017), No. 7, p. 1719.

    Article  Google Scholar 

  35. M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and H. Li, Formation of fine B2/β + O structure and enhancement of hardness in the aged Ti2AlNb-Based alloys prepared by spark plasma sintering, Metall. Mater. Trans. A, 48(2017), No. 9, p. 4365.

    Article  Google Scholar 

  36. M. Behera, S. Raju, R. Mythili, and S. Saroja, Study of kinetics of α⇔ β phase transformation in Ti–4.4 mass% Ta–1.9 mass% Nb alloy using differential scanning calorimetry, J. Therm. Anal. Calorim., 124(2016), No. 3, p. 1217.

    Article  Google Scholar 

  37. M.I.D. Barros, D. Rats, L. Vandenbulcke, and G. Farges, Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition, Diamond Relat. Mater., 8(1999), No. 6, p. 1022.

    Article  Google Scholar 

  38. M. Hansen, K. Anderko, and H.W. Salzberg, Constitution of binary alloys, J. Electrochem. Soc., 105(1958), No. 12, p. 260.

    Article  Google Scholar 

  39. K. Muraleedharan, D. Banerjee, S. Banerjee, and S. Lele, The α2-to-O transformation in Ti–Al–Nb alloys, Philos. Mag. A., 5(1995), No. 5, p. 1011.

    Article  Google Scholar 

  40. J. Roger, B. Gardiola, J. Andrieux, J.C. Viala, and O. Dezellus, Synthesis of Ti matrix composites reinforced with TiC particles: thermodynamic equilibrium and change in microstructure, J. Mater. Sci., 52(2017), No. 7, p. 4129.

    Article  Google Scholar 

  41. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969), No. 2, p. 65.

    Article  Google Scholar 

  42. W. Wang, W.D. Zeng, C. Xue, X.B. Liang, and J.W. Zhang, Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti–22Al–25Nb (at.%) orthorhombic alloy, Intermetallics, 45(2014), p. 29.

    Article  Google Scholar 

  43. Y. Wang, X.Q. Cai, Z.W. Yang, D.P. Wang, X.G. Liu, and Y.C. Liu, Effects of Nb content in Ti–Ni–Nb brazing alloys on the microstructure and mechanical properties of Ti–22Al–25Nb alloy brazed joints, J. Mater. Sci. Technol., 33(2017), No. 7, p. 682.

    Article  Google Scholar 

  44. B. Shao, S.X. Wan, D.B. Shan, B. Guo, and Y.Y. Zong, Hydrogen-induced improvement of the cylindrical drawing properties of a Ti–22Al–25Nb alloy, Adv. Eng. Mater., 19(2016), No. 3, art. No. 1600621.

Download references

Acknowledgements

The authors are grateful to the China National Funds for Distinguished Young Scientists (No. 51325401), the National Natural Science Foundation of China (Nos. 51474156 and U1660201), and the National Magnetic Confinement Fusion Energy Research Program of China (No. 2014GB125006) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yr., Cai, Q., Liu, Yc. et al. Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys. Int J Miner Metall Mater 25, 453–458 (2018). https://doi.org/10.1007/s12613-018-1591-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1591-x

Keywords

Navigation