Skip to main content

Advertisement

Log in

Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The retained austenite content (RAC), the mechanical properties, and the resistance to cavitation erosion (CE) of the 00Cr13Mn8MoN steel after quenching and partitioning (Q&P) processing were investigated. The results show that the Q&P process affected the RAC, which reached the maximum value after partitioning at 400°C for 10 min. The tensile strength of the steel slightly decreased with increasing partitioning temperature and time. However, the elongation and product of strength and elongation first increased and then decreased. The sample partitioned at 400°C for 10 min exhibited the optimal property: a strength-ductility of 23.8 GPa·%. The resistance to CE for the 00Cr13Mn8MoN steel treated by the Q&P process was improved due to work hardening, spalling, and cavitation-induced martensitic transformation of the retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R, 65(2009), No. 4-6, p. 39.

    Article  Google Scholar 

  2. Z.H. Wang, Q. Meng, M.G. Qu, Z.A. Zhou, B. Wang, and W.T. Fu, Effect of strain rate on hot ductility behavior of a high nitrogen Cr–Mn austenitic steel, Metall. Mater. Trans. A, 47(2016), No. 3, p. 1268.

    Article  Google Scholar 

  3. W.T. Fu, Y.B. Yang, T.F. Jing, Y.Z. Zheng, and M. Yao, The resistance to cavitation erosion of CrMnN stainless steels, J. Mater. Eng. Perform., 7(1998), No. 6, p. 801.

    Article  Google Scholar 

  4. R.H. Zhang, Z.A. Zhou, M.W. Guo, J.J. Qi, S.H. Sun, and W.T. Fu, Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1043.

    Article  Google Scholar 

  5. J.F. Santa, J.A. Blanco, J.E. Giraldo, and A. Toro, Cavitation erosion of martensitic and austenitic stainless steel welded coatings, Wear, 271(2011), No. 9-10, p. 1445.

    Article  Google Scholar 

  6. Z. Cvijović and G. Radenković, Microstructure and pitting corrosion resistance of annealed duplex stainless steel, Corros. Sci., 48(2006), No. 12, p. 3887.

    Article  Google Scholar 

  7. P.D. Bilmes, M. Solari, and C.L. Llorente, Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals, Mater. Charact., 46(2001), No. 4, p. 285.

    Article  Google Scholar 

  8. B.K. Sreedhar, S.K. Albert, and A.B. Pandit, Cavitation erosion testing of austenitic stainless steel (316L) in liquid sodium, Wear, 328-329(2015), p. 436.

    Article  Google Scholar 

  9. W. Liu, Y.G. Zheng, C.S. Liu, Z.M. Yao, and W. Ke, Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel, Wear, 254(2003), No. 7-8, p. 713.

    Article  Google Scholar 

  10. C.T. Kwok, H.C. Man, and F.T. Cheng, Cavitation erosion and pitting corrosion behaviour of laser surface-melted martensitic stainless steel UNS S42000, Surf. Coat. Technol., 126(2000), No. 2-3, p. 238.

    Article  Google Scholar 

  11. S. Lee, S.J. Lee, and B.C.D. Cooman, Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning, Scripta Mater., 65(2011), No. 3, p. 225.

    Article  Google Scholar 

  12. J. Speer, D.K. Matlock, B.C.D. Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611.

    Article  Google Scholar 

  13. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 219.

    Article  Google Scholar 

  14. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E.D. Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment, Acta Mater., 56(2008), No. 1, p. 16.

    Article  Google Scholar 

  15. W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 303.

    Article  Google Scholar 

  16. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, and W.H. Tian, Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 906.

    Article  Google Scholar 

  17. Y. Li, G.Y. Xiao, L.B. Chen, and Y.P. Lu, Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel, Int. J. Miner. Metall. Mater., 21(2014), No. 12, p. 1196.

    Article  Google Scholar 

  18. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, and S. Takaki, Quenching and partitioning treatment of a low-carbon martensitic stainless steel, Mater. Sci. Eng. A, 532(2012), p. 585.

    Article  Google Scholar 

  19. J. Mola and B.C.D. Cooman, Quenching and partitioning (Q&P) processing of martensitic stainless steels, Metall. Mater. Trans. A, 44(2013), No. 2, p. 946.

    Article  Google Scholar 

  20. W.T. Fu, Z. Wang, T.F. Jing, and Y.Z. Zheng, Thermal stability of undercooled Austenite in a CrMnN dual-phase stainless steel, Heat Treat. Met., 1997, No. 11, p. 9.

    Google Scholar 

  21. Z. Li and D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si–Mn TRIP steels, ISIJ Int., 46(2006), No. 1, p. 121.

    Article  Google Scholar 

  22. M. Wendler, C. Ullrich, M. Hauser, L. Krüger, O. Volkova, A. Weiß, and J. Mola, Quenching and partitioning (Q&P) processing of fully austenitic stainless steels, Acta Mater., 133(2017), p. 346.

    Article  Google Scholar 

  23. F. Hajyakbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia, Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 104(2016), p. 72.

    Google Scholar 

  24. E.J. Seo, L. Cho, and B.C.D. Cooman, Application of quenching and partitioning (Q&P) processing to press hardening steel, Metall. Mater. Trans. A, 45(2014), No. 9, p. 4022.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51505416), the Natural Science Foundation–Steel and Iron Foundation of Hebei Province, China (No. E2017203041), the Natural Science Foundation of Hebei Province, China (No. E2016203436), and the Post-Doctoral Research Project of Hebei Province, China (No. B2016003029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-hua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Za., Fu, Wt., Zhu, Z. et al. Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment. Int J Miner Metall Mater 25, 547–553 (2018). https://doi.org/10.1007/s12613-018-1601-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1601-z

Keywords

Navigation