Skip to main content
Log in

Microwave-assisted reduction roasting—magnetic separation studies of two mineralogically different low-grade iron ores

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The microwave-assisted reduction behaviours of two low-grade iron ores having a similar Fe content of 49wt% but distinctly different mineralogical and liberation characteristics were studied. Their performances in terms of the iron grade and recovery as obtained from statistically designed microwave (MW) roasting followed by low-intensity magnetic separation (LIMS) experiments were compared. At respective optimum conditions, the titano-magnetite ore (O1) could yield an iron concentrate of 62.57% Fe grade and 60.01% Fe recovery, while the goethitic ore (O2) could be upgraded to a concentrate of 64.4% Fe grade and 33.3% Fe recovery. Compared with the goethitic ore, the titano-magnetite ore responded better to MW heating. The characterization studies of the feed and roasted products obtained at different power and time conditions using X-ray diffraction, optical microscopy, vibrating-sample magnetometry, and electron-probe microanalysis explain the sequential reduction in the iron oxide phases. Finally, taking advantage of the MW absorbing character of the titano-magnetite ore, a blend of the same with the goethite-rich ore at a weight ratio of 60:40 (O2: O1) was subjected to MW roasting that resulted in a concentrate of 61.57% Fe grade with a Fe recovery of 64.47%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.S. Sun, Y.X. Han, P. Gao, Z.L. Wang, and D.Z. Ren, Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., 20(2013), No. 5, p. 411.

    Article  Google Scholar 

  2. G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000.

    Article  CAS  Google Scholar 

  3. S.S. Rath, D.S. Rao, S.K. Tripathy, and S.K. Biswal, Characterization vis-á-vis utilization of blast furnace flue dust in the roast reduction of banded iron ore, Process Saf. Environ. Prot., 117(2018), p. 232.

    Article  CAS  Google Scholar 

  4. N. Ray, D. Nayak, N. Dash, and S.S. Rath, Utilization of low-grade banded hematite jasper ores: Recovery of iron values and production of ferrosilicon, Clean Technol. Environ. Policy, 20(2018), No. 8, p. 1761.

    Article  CAS  Google Scholar 

  5. Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938.

    Article  Google Scholar 

  6. S.M.J. Koleini and K. Barani, Microwave heating applications in mineral processing, [in] W.B. Cao, ed., The Development and Application of Microwave Heating, InTechOpen, London, 2012.

    Google Scholar 

  7. K. Onol and M.N. Saridede, Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 228.

    Article  CAS  Google Scholar 

  8. Y.Z. Yuan, Y.M. Zhang, T. Liu, and T.J. Chen, Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 476.

    Article  CAS  Google Scholar 

  9. K.E. Haque, Microwave energy for mineral treatment processes—A brief review, Int. J. Miner. Process., 57(1999), No. 1, p. 1.

    Article  CAS  Google Scholar 

  10. C.A. Pickles, Microwave heating behaviour of nickeliferous limonitic laterite ores, Miner. Eng., 17(2004), No. 6, p. 775.

    Article  CAS  Google Scholar 

  11. Z.Q. Zhu and J. Zhou, Rapid growth of ZnO hexagonal tubes by direct microwave heating, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 80.

    Article  CAS  Google Scholar 

  12. C.A. Pickles, Microwaves in extractive metallurgy: Part 1—Review of fundamentals, Miner. Eng., 22(2009), No. 13, p. 1102.

    Article  CAS  Google Scholar 

  13. F.F. Wu, Z.F. Cao, S. Wang, and H. Zhong, Novel and green metallurgical technique of comprehensive utilization of refractory limonite ores, J. Cleaner Prod., 171(2018), p. 831.

    Article  CAS  Google Scholar 

  14. V. Rayapudi, S. Agrawal, and N. Dhawan, Optimization of microwave carbothermal reduction for processing of banded hematite jasper ore, Miner. Eng., 138(2019), p. 204.

    Article  CAS  Google Scholar 

  15. S.S. Rath, N. Dhawan, D.S. Rao, B. Das, and B.K. Mishra, Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting, Powder Technol., 301(2016), p. 1016.

    Article  CAS  Google Scholar 

  16. P. Kumar, B.K. Sahoo, S. De, D.D. Kar, S. Chakraborty, and B.C. Meikap, Iron ore grindability improvement by microwave pre-treatment, J. Ind. Eng. Chem., 16(2010), No. 5, p. 805.

    Article  CAS  Google Scholar 

  17. J.P. Wang, T. Jiang, Y.J. Liu, and X.X. Xue, Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 160.

    Article  CAS  Google Scholar 

  18. J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E.G. Calvo, and J.M. Bermúdez, Microwave heating process involving carbon materials, Fuel Process. Technol., 91(2010), No. 1, p. 1.

    Article  Google Scholar 

  19. P.C. Beuria, S.K. Biswal, B.K. Mishra, and G.G. Roy, Study on kinetics of thermal decomposition of low LOI goethetic hematite iron ore, Int. J. Min. Sci. Technol., 27(2017), No. 6, p. 1031.

    Article  CAS  Google Scholar 

  20. S.K. Das, B. Das, R. Sakthivel, and B.K. Mishra, Mineralogy, microstructure, and chemical composition of goethites in some iron ore deposits of orissa, India, Miner. Process. Extr. Metall. Rev., 31(2010), No. 2, p. 97.

    Article  CAS  Google Scholar 

  21. D. Nayak, N. Dash, N. Ray, and S.S. Rath, Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines, Powder Technol., 353(2019), p. 450.

    Article  CAS  Google Scholar 

  22. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349.

    Article  CAS  Google Scholar 

  23. B.C. Jena, W. Dresler, and I.G. Reilly, Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Miner. Eng., 8(1995), No. 1–2, p. 159.

    Article  CAS  Google Scholar 

  24. S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 71(2019), No. 3, p. 1144.

    Article  CAS  Google Scholar 

  25. L.S. Zhao, L.N. Wang, D.S. Chen, H.X. Zhao, Y.H. Liu, and T. Qi, Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation, Trans. Nonferrous Met. Soc. China, 25(2015), No. 4, p. 1325.

    Article  CAS  Google Scholar 

  26. T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Reduction behavior of panzhihua titanomagnetite concentrates with coal, Metall. Mater. Trans. B, 44(2013), No. 2, p. 252.

    Article  CAS  Google Scholar 

  27. T. Jiang, J. Xu, S.F. Guan, and X.X. Xue, Study on coal-based direct reduction of high-chromium vanadium-titanium magnetite, J. Northeast. Univ., 36(2015), No. 1, p. 77.

    CAS  Google Scholar 

  28. M.S. Jena, H.K. Tripathy, J.K. Mohanty, J.N. Mohanty, S.K. Das, and P.S.R. Reddy, Roasting followed by magnetic separation: A process for beneficiation of titano-magnetite ore, Sep. Sci. Technol., 50(2015), No. 8, p. 1221.

    Article  CAS  Google Scholar 

  29. K. Ishizaki, K. Nagata, and T. Hayashi, Production of pig iron from magnetite ore-coal composite pellets by microwave heating, ISIJ Int., 46(2006), No. 10, p. 1403.

    Article  CAS  Google Scholar 

  30. P. Ramdohr, The Ore Minerals and Their Intergrowths, Elsevier, Netherlands, 1969.

    Google Scholar 

  31. S.H. Guo, W. Li, J.H. Peng, H. Niu, M.Y. Huang, L.B. Zhang, S.M. Zhang, and M. Huang, Microwave-absorbing characteristics of mixtures of different carbonaceous reducing agents and oxidized ilmenite, Int. J. Miner. Process., 93(2009), No. 3–4, p. 289.

    Article  CAS  Google Scholar 

  32. C.A. Pickles, J. Mouris, and R.M. Hutcheon, High-temperature dielectric properties of goethite from 400 to 3000 MHz, J. Mater. Res., 20(2005), No. 1, p. 18.

    Article  CAS  Google Scholar 

  33. K. Kawahira, Y. Saito, N. Yoshikawa, H. Todoroki, and S. Taniguchi, Penetration depth of microwave into the mixture of goethite with graphite estimated by permittivity and conductivity, Metall. Mater. Trans. B, 45(2014), No. 1, p. 212.

    Article  CAS  Google Scholar 

  34. Y. Saito, K. Kawahira, N. Yoshikawa, H. Todoroki, and S. Taniguchi, Dehydration behavior of goethite blended with graphite by microwave heating, ISIJ Int., 51(2011), No. 6, p. 878.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-IMMT, Bhubaneswar for his permission to publish this paper and the Ministry of Steel, Government of India, for their financial support (F. No. 11(12)/GBS/2014-TW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagat S. Rath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.K., Nayak, D., Dash, N. et al. Microwave-assisted reduction roasting—magnetic separation studies of two mineralogically different low-grade iron ores. Int J Miner Metall Mater 27, 1449–1461 (2020). https://doi.org/10.1007/s12613-020-1992-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1992-5

Keywords

Navigation