Skip to main content
Log in

Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The effect of cold rolling and post-rolling heat treatment on the microstructural and electrochemical properties of the 316L stainless steel was investigated. Two-pass and four-pass cold-rolled stainless steel specimens were heat-treated by annealing at 900°C followed by quenching in water. During the cold rolling, the microstructure of the as-received specimen transformed from austenite to strain-induced α’-martensite due to significant plastic deformation that also resulted in significant grain elongation (i.e., ∼33% and 223% increases in the grain elongation after two and four rolling passes, respectively). The hardness of the heat-treated as-received specimen decreased from HV 190 to 146 due to the recovery and recrystallization of the austenite grain structure. The cyclic polarization scans of the as-rolled and heat-treated specimens were obtained in 0.9wt% NaCl solution. The pitting potential of the four-pass rolled specimen was significantly increased from 322.3 to 930.5 mV after post-rolling heat treatment. The beneficial effect of the heat treatment process was evident from ∼10-times-lower corrosion current density and two-orders-of-magnitude-lower passive current density of the heat-treated specimens compared with those of the as-rolled specimens. Similarly, appreciably lower corrosion rate (3.302 × 10−4 mm/a) and higher pitting resistance (1115.5 mV) were exhibited by the post-rolled heat-treated specimens compared with the as-rolled 316L stainless steel specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Shih, C.M. Shih, Y.Y. Su, L.H.J. Su, M.S. Chang, and S.J. Lin, Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications, Corros. Sci., 46(2004), No. 2, p. 427.

    Article  CAS  Google Scholar 

  2. M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker, and W. Haider, Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications, Addit. Manuf., 27(2019), p. 8.

    CAS  Google Scholar 

  3. J.A. Helsen and Y. Missirlis, Biomaterials: A Tantalus Experience, Springer, Berlin, Heidelberg, 2010, p. 607.

    Book  Google Scholar 

  4. T. Balusamy, S. Kumar, and T.S.N.S. Narayanan, Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel, Corros. Sci., 52(2010), No. 11, p. 3826.

    Article  CAS  Google Scholar 

  5. G. Lorang, M.D.C. Belo, A.M.P. Simões, and M.G.S. Ferreira, Chemical composition of passive films on AISI 304 stainless steel, J. Electrochem. Soc., 141(1994), No. 12, p. 3347.

    Article  CAS  Google Scholar 

  6. L. Freire, M.J. Carmezim, M.G.S. Ferreira, and M.F. Montemor, The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study, Electrochim. Acta, 55(2010), No. 21, p. 6174.

    Article  CAS  Google Scholar 

  7. M.J.K. Lodhi, K.M. Deen, and W. Haider, Corrosion behavior of additively manufactured 316L stainless steel in acidic media, Materialia, 2(2018), p. 111.

    Article  Google Scholar 

  8. Y. Zhao, X.P. Li, C. Zhang, T. Zhang, J.F. Xie, G.X. Zeng, D.K. Xu, and F.H. Wang, Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test, Corros. Sci., 145(2018), p. 307.

    Article  CAS  Google Scholar 

  9. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen, Influence of nitrogen on corrosion behavior of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy, Corros. Sci., 144(2018), p. 288.

    Article  CAS  Google Scholar 

  10. H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, S. Zhao, T. Zhang, D.K. Xu, S.C. Zhang, H.C. Zhu, B.B. Zhang, and M.X. Yang, Effect of nitrogen on corrosion behavior of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1781.

    Article  Google Scholar 

  11. Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, and K. Lu, Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment, Acta Mater., 51(2003), No. 14, p. 4319.

    Article  CAS  Google Scholar 

  12. M. Pisarek, P. Kedzierzawski, T. Plociński, M. Janik-Czachor, and K.J. Kuraydłowski, Characterization of the effects of hydrostatic extrusion on grain size, surface composition and the corrosion resistance of austenitic stainless steels, Mater. Charact., 59(2008), No. 9, p. 1292.

    Article  CAS  Google Scholar 

  13. B. Zhang, Y. Li, and F.H. Wang, Electrochemical corrosion behaviour of microcrystalline aluminium in acidic solutions, Corros. Sci., 49(2007), No. 5, p. 2071.

    Article  CAS  Google Scholar 

  14. J. Park and R.S. Lakes, Biomaterial: An Introduction, 3rd ed., Springer, New York, 2007.

    Google Scholar 

  15. Y. Fu, X.Q. Wu, E.H. Han, W. Ke, K. Yang, and Z.H. Jiang, Effects of cold work and sensitization treatment on the corrosion resistance of high nitrogen stainless steel in chloride solutions, Electrochim. Acta, 54(2009), No. 5, p. 1618.

    Article  CAS  Google Scholar 

  16. S.V. Muley, A.N. Vidvans, G.P. Chaudhari, and S. Udainiya, An assessment of ultra fine grained 316L stainless steel for implant applications, Acta Biomater., 30(2016), p. 408.

    Article  CAS  Google Scholar 

  17. M. Pisarek, P. Kedzierzawski, M. Janik-Czachor, and K.J. Kurzydlowski, The effect of hydrostatic extrusion on resistance of 316 austenitic stainless steel to pit nucleation, Electrochem. Commun., 9(2007), No. 10, p. 2463.

    Article  CAS  Google Scholar 

  18. C.J. Semino, P. Pedeferri, G.T. Burstein, and T.P. Hoar, The localized corrosion of resistant alloys in chloride solutions, Corros. Sci., 19(1979), No. 7, p. 1069.

    Article  CAS  Google Scholar 

  19. P.L. Mangonon and G. Thomas, Structure and properties of thermal-mechanically treated 304 stainless steel, Metall. Trans., 1(1970), No. 6, p. 1587.

    Article  CAS  Google Scholar 

  20. R.B. Cruise and L. Gardner, Strength enhancements induced during cold forming of stainless steel sections, J. Constr. Steel Res., 64(2008), No. 11, p. 1310.

    Article  Google Scholar 

  21. B. Mazza, P. Pedeferri, D. Sinigaglia, A. Cigada, G. Fumagalli, and G. Re, Electrochemical and corrosion behavior of work-hardened commercial austenitic stainless steels in acid solutions, Corros. Sci., 19(1979), No. 11, p. 907.

    Article  CAS  Google Scholar 

  22. G. Schmitt and K. Bedbur, Investigations on structural and electronic effects in acid inhibitors by AC impedance, [in] Proceedings of the 9th International Congress on Metallic Corrosion, Toronto, Canada, 1984, p. 112.

  23. H.P. Leckie and H.H. Uhlig, Environmental factors affecting the critical potential for pitting in 18–8 stainless steel, J. Electrochem. Soc., 113(1966), No. 12, p. 1262.

    Article  CAS  Google Scholar 

  24. K.M. Deen, M.A. Virk, C.I. Haque, R. Ahmad, and I.H. Khan, Failure investigation of heat exchanger plates due to pitting corrosion, Eng. Fail. Anal., 17(2010), No. 4, p. 886.

    Article  CAS  Google Scholar 

  25. S.D. Cramer and B.S. Covino, Corrosion: Fundamentals, Testing, and Protection, ASM International, Materials Park, OH, 2003.

    Book  Google Scholar 

  26. M. Eskandari, M. Yeganeh, and M. Motamedi, Investigation in the corrosion behavior of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution, Micro Nano Lett., 7(2012), No. 4, p. 380.

    Article  Google Scholar 

  27. J.H. Shin and J.W. Lee, Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steel, Mater. Charact., 91(2014), p. 19.

    Article  CAS  Google Scholar 

  28. S.H. Avner, Introduction to Physical Metallurgy, 2nd ed., McgrawHill, New York, 1974.

    Google Scholar 

  29. T. Sourmail, P. Opdenacker, G. Hopkin, and H.K.D.H. Bhadeshia, Metals and Alloys: Annealing Twins, University of Cambridge (2001). https://www.ahasr-trans.msm.cam.ac.uk/abstracts/annealing.twin.html

  30. N. Solomon and I. Solomon, Effect of deformation-induced phase transformation on AISI 316 stainless steel corrosion resistance, Eng. Fail. Anal., 79(2017), p. 865.

    Article  CAS  Google Scholar 

  31. N. Solomon and I. Solomon, Deformation induced martensite in AISI 316 stainless steel, Rev. Metal., 46(2010), No. 2, p. 121.

    Article  CAS  Google Scholar 

  32. Z.H. Jiang, H. Feng, H.B. Li, H.C. Zhu, S.C. Zhang, B.B. Zhang, Y. Han, T. Zhang, and D.K. Xu, Relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures, Materials, 10(2017), No. 8, p. 861.

    Article  Google Scholar 

  33. W. Ozgowicz, A. Kurc, and M. Kciuk, Effect of deformation-induced martensite on the microstructure, mechanical properties and corrosion resistance of X5CrNi18-8 stainless steel, Arch. Mater. Sci. Eng., 43(2010), No. 1, p. 42.

    Google Scholar 

  34. D. Fahr, Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels, Metall. Trans., 2(1971), No. 7, p. 1883.

    Article  CAS  Google Scholar 

  35. H. Chandler, Heat Treater’s Guide: Practices and Procedures for Irons and Steels, 2nd ed., ASM International, Materials Park, OH, 1995.

    Google Scholar 

  36. C. Suryanarayana, Microstructure: An introduction, [in] N.E. Prasad and R.J.H. Wanhill, eds., Aerospace Materials and Meterial Technologies: Volume 2: Aerospace Material Technologies, Springer, Singapore, 2017, p. 105.

    Chapter  Google Scholar 

  37. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  38. W.B. Qin, J.S. Li, Y.Y. Liu, W. Yue, C.B. Wang, Q.Z. Mao, and Y.S. Li, Effect of rolling strain on the mechanical and tribological properties of 316L stainless steel, J. Tribol., 141(2019), No. 2, art. No. 021606.

  39. D.M. Xu, X.L. Wan, J.X. Yu, G. Xu, and G.Q. Li, Effect of cold deformation on microstructures and mechanical properties of austenitic stainless steel, Metals, 8(2018), No. 7, art. No. 522.

  40. R.B. Song, J.Y. Xiang, and D.P. Hou, Characterization of mechanical properties and microstructure for 316L austenitic stainless steel, J. Iron Steel Res. Int., 18(2011), No. 11, p. 53.

    Article  CAS  Google Scholar 

  41. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, 2nd ed., National Association of Corrosion Engineers, Houston, 1974.

    Google Scholar 

  42. Y.S. Lim, J.S. Kim, S.J. Ahn, H.S. Kwon, and Y. Katada, The influence of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20wt.% Mn-substituted type 316L stainless steels, Corros. Sci., 43(2001), No. 1, p. 53.

    Article  CAS  Google Scholar 

  43. S. Esmailzadeh, M. Aliofkhazraei, and H. Sarlak, Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behaviour of metals: A Review, Prot. Met. Phys. Chem. Surf., 54(2018), No. 5, p. 976.

    Article  CAS  Google Scholar 

  44. R.M. Cornell, A.M. Posner, and J.P. Quirk, Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH), J. Inorg. Nucl. Chem., 38(1976), No. 3, p. 563.

    Article  CAS  Google Scholar 

  45. S. Tanhaei, K. Gheisari, and S.R.A. Zaree, Effect of cold rolling on the microstructural. magnetic, mechanical and corrosion properties of AISI 316L austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 630.

    Article  CAS  Google Scholar 

  46. A. Farooq, K.M. Deen, I.H. Khan, M.A. Raza, R. Ahmad, A. Salam, and W. Haider, Peculiar corrosion behavior of type 316L SS in simulated cooling water at various pH values, Mater. Perform., 53(2014), No. 10, p. 44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Deen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayyab, K.B., Farooq, A., Alvi, A.A. et al. Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution. Int J Miner Metall Mater 28, 440–449 (2021). https://doi.org/10.1007/s12613-020-2054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2054-8

Keywords

Navigation