Skip to main content

Advertisement

Log in

Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement (HE) of high-strength steel. The results reveal that the mechanical strength and elongation of quenched and tempered steel (919 MPa yield strength, 17.11% elongation) are greater than those of hot-rolled steel (690 MPa yield strength, 16.81% elongation) due to the strengthening effect of in-situ Ti3O5-Nb(C,N) nanoparticles. In addition, the HE susceptibility is substantially mitigated to 55.52%, approximately 30% lower than that of steels without in-situ nanoparticles (84.04%), which we attribute to the heterogeneous nucleation of the Ti3O5 nanoparticles increasing the density of the carbides. Compared with hard TiN inclusions, the spherical and soft Al2O3-MnS core—shell inclusions that nucleate on in-situ Al2O3 particles could also suppress HE. In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Oriani and P.H. Josephic, Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel, Acta Metall., 25(1977), No. 9, p. 979.

    Article  CAS  Google Scholar 

  2. S.P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36(1988), No. 10, p. 2639.

    Article  CAS  Google Scholar 

  3. H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, 176(1994), No. 1–2, p. 191.

    Article  CAS  Google Scholar 

  4. C.D. Beachem, A new model for hydrogen-assisted cracking (hydrogen “embrittlement”), Metall. Mater. Trans. B, 3(1972), No. 2, p. 441.

    Article  Google Scholar 

  5. J. Sanchez, S.F. Lee, M.A. Martin-Rengel, J. Fullea, C. Andrade, and J. Ruiz-Hervias, Measurement of hydrogen and embrittlement of high strength steels, Eng. Fail. Anal., 59(2016), p. 467.

    Article  CAS  Google Scholar 

  6. A. Kuduzović, M.C. Poletti, C. Sommitsch, M. Domankova, S. Mitsche, and R. Kienreich, Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners, Mater. Sci. Eng. A, 590(2014), p. 66.

    Article  CAS  Google Scholar 

  7. P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging-releasing-recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63.

    Article  CAS  Google Scholar 

  8. J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee, Role of Mo/V carbides in hydrogen embrittlement of tempered martensitic steel, Corros. Rev., 33(2015), No. 6, p. 433.

    Article  CAS  Google Scholar 

  9. D.H. Shim, T. Lee, J. Lee, H.J. Lee, J.Y. Yoo, and C.S. Lee, Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite, Mater. Sci. Eng. A, 700(2017), p. 473.

    Article  CAS  Google Scholar 

  10. X.F. Li, J. Zhang, M.M. Ma, and X.L. Song, Effect of shot peening on hydrogen embrittlement of high strength steel, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 667.

    Article  CAS  Google Scholar 

  11. Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, and W. Ke, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater., 139(2017), p. 188.

    Article  CAS  Google Scholar 

  12. C. Man, C.F. Dong, D.C. Kong, L. Wang, and X.G. Li, Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel, Corros. Sci., 151(2019), p. 108.

    Article  CAS  Google Scholar 

  13. D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, and K. Verbeken, Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe-C alloys, Corros. Sci., 65(2012), p. 199.

    Article  CAS  Google Scholar 

  14. D. Pérez Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy, Mater. Sci. Eng. A, 551(2012), p. 50.

    Article  CAS  Google Scholar 

  15. S.M. Lee, I.J. Park, J.G. Jung, and Y.K. Lee, The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels, Acta Mater., 103(2016), p. 264.

    Article  CAS  Google Scholar 

  16. W.J. Hui, Z.B. Xu, Y.J. Zhang, X.L. Zhao, C.W. Shao, and Y.Q. Weng, Hydrogen embrittlement behavior of high strength rail steels: A comparison between pearlitic and bainitic microstructures, Mater. Sci. Eng. A, 704(2017), p. 199.

    Article  CAS  Google Scholar 

  17. Q.L. Liu, Q.J. Zhou, J. Venezuela, M.X. Zhang, and A. Atrens, Hydrogen influence on some advanced high-strength steels, Corros. Sci., 125(2017), p. 114.

    Article  CAS  Google Scholar 

  18. J.J. Sun, T. Jiang, Y. Sun, Y.J. Wang, and Y.N. Liu, A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement, J. Alloys Compd., 698(2017), p. 390.

    Article  CAS  Google Scholar 

  19. Q.L. Liu, Q.J. Zhou, J. Venezuela, M.X. Zhang, and A. Atrens, The role of the microstructure on the influence of hydrogen on some advanced high-strength steels, Mater. Sci. Eng. A, 715(2018), p. 370.

    Article  CAS  Google Scholar 

  20. J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater., 63(2010), No. 3, p. 261.

    Article  CAS  Google Scholar 

  21. G.M. Pressouyre, A classification of hydrogen traps in steel, Metall. Trans. A, 10(1979), No. 10, p. 1571.

    Article  Google Scholar 

  22. T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol., 15(1999), No. 1, p. 30.

    Article  CAS  Google Scholar 

  23. J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee, Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel, Met. Mater. Int., 22(2016), No. 3, p. 364.

    Article  CAS  Google Scholar 

  24. A. Turk, D. San Martin, P.E.J. Rivera-Diaz-del-Castillo, and E.I. Galindo-Nava, Correlation between vanadium carbide size and hydrogen trapping in ferritic steel, Scripta Mater., 152(2018), p. 112.

    Article  CAS  Google Scholar 

  25. J. Takahashi, K. Kawakami, and T. Tarui, Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography, Scripta Mater., 67(2012), No. 2, p. 213.

    Article  CAS  Google Scholar 

  26. D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen interaction with TiC precipitates in a-Fe, Phys. Rev. B, 93(2016), No. 18, art. No. 184108.

  27. F.G. Wei and K. Tsuzaki, Quantitative analysis on hydrogen trapping of TiC particles in steel, Metall. Mater. Trans. A, 37(2006), No. 2, p. 331.

    Article  Google Scholar 

  28. J. Takahashi, K. Kawakami, and Y. Kobayashi, Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel, Acta Mater., 153(2018), p. 193.

    Article  CAS  Google Scholar 

  29. Y.S. Chen, D. Haley, S.S. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355(2017), No. 6330, p. 1196.

    Article  CAS  Google Scholar 

  30. B. Malard, B. Remy, C. Scott, A. Deschamps, J. Chêne, T. Dieudonné, and M.H. Mathon, Hydrogen trapping by VC precipitates and structural defects in a high strength Fe-Mn-C steel studied by small-angle neutron scattering, Mater. Sci. Eng. A, 536(2012), p. 110.

    Article  CAS  Google Scholar 

  31. S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139(2018), p. 83.

    Article  CAS  Google Scholar 

  32. E. Wallaert, T. Depover, M. Arafin, and K. Verbeken, Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of nbc and nbn precipitates, Metall. Mater. Trans. A, 45(2014), No. 5, p. 2412.

    Article  CAS  Google Scholar 

  33. T. Depover and K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci., 112(2016), p. 308.

    Article  CAS  Google Scholar 

  34. T. Depover and K. Verbeken, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys, Mater. Sci. Eng. A, 675(2016), p. 299.

    Article  CAS  Google Scholar 

  35. R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel, J. Mater. Sci. Technol., 35(2019), No. 9, p. 1940.

    Article  Google Scholar 

  36. H. Tang, X.H. Chen, M.W. Chen, L.F. Zuo, B. Hou, and Z.D. Wang, Microstructure and mechanical property of in-situ nanoparticle strengthened ferritic steel by novel internal oxidation, Mater. Sci. Eng. A, 609(2014), p. 293.

    Article  CAS  Google Scholar 

  37. X.H. Chen, L.L. Qiu, H. Tang, X. Luo, L.F. Zuo, Z.D. Wang, and Y.L. Wang, Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel, J. Mater. Process. Technol., 222(2015), p. 224.

    Article  CAS  Google Scholar 

  38. S.J. Kim, K.M. Ryu, and M.S. Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 415.

    Article  CAS  Google Scholar 

  39. Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597.

    Article  CAS  Google Scholar 

  40. Y. Momotani, A. Shibata, D. Terada, and N. Tsuji, Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel, Int. J. Hydrogen Energy, 42(2017), No. 5, p. 3371.

    Article  CAS  Google Scholar 

  41. J. Venezuela, Q.L. Liu, M.X. Zhang, Q.J. Zhou, and A. Atrens, The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test, Corros. Sci., 99(2015), p. 98.

    Article  CAS  Google Scholar 

  42. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials, Acta Mater., 165(2019), p. 734.

    Article  CAS  Google Scholar 

  43. S. Wang, N. Hashimoto, and S. Ohnuki, Effects of hydrogen on activation volume and density of mobile dislocations in iron-based alloy, Mater. Sci. Eng. A, 562(2013), p. 101.

    Article  CAS  Google Scholar 

  44. M. Connolly, M. Martin, P. Bradley, D. Lauria, A. Slifka, R. Amaro, C. Looney, and J.S. Park, In situ high energy X-ray diffraction measurement of strain and dislocation density ahead of crack tips grown in hydrogen, Acta Mater., 180(2019), p. 272.

    Article  CAS  Google Scholar 

  45. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel, Acta Mater., 60(2012), No. 13–14, p. 5182.

    Article  CAS  Google Scholar 

  46. S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, and I.M. Robertson, Hydrogen-induced intergranular failure of iron, Acta Mater., 69(2014), p. 275.

    Article  CAS  Google Scholar 

  47. M.L. Martin, I.M. Robertson, and P. Sofronis, Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach, Acta Mater., 59(2011), No. 9, p. 3680.

    Article  CAS  Google Scholar 

  48. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels, Acta Mater., 59(2011), No. 4, p. 1601.

    Article  CAS  Google Scholar 

  49. J. Venezuela, Q.J. Zhou, Q.L. Liu, H.X. Li, M.X. Zhang, M.S. Dargusch, and A. Atrens, The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels, Mater. Today Commun., 17(2018), p. 1.

    Article  CAS  Google Scholar 

  50. F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6997.

    Article  CAS  Google Scholar 

  51. J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A, 11(1980), No. 6, p. 861.

    Article  Google Scholar 

  52. C.S. Zhou, B.G. Ye, Y.Y. Song, T.C. Cui, P. Xu, and L. Zhang, Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel, Int. J. Hydrogen Energy, 44(2019), No. 40, p. 22547.

    Article  CAS  Google Scholar 

  53. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Solids, 112(2018), p. 403.

    Article  CAS  Google Scholar 

  54. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58(2010), No. 2, p. 206.

    Article  CAS  Google Scholar 

  55. X.F. Li, J. Zhang, S.C. Shen, Y.F. Wang, and X.L. Song, Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel, Mater. Sci. Eng. A, 682(2017), p. 359.

    Article  CAS  Google Scholar 

  56. L.W. Wang, J.C. Xin, L.J. Cheng, K. Zhao, B.Z. Sun, J.R. Li, X. Wang, and Z.Y. Cui, Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment, Corros. Sci., 147(2019), p. 108.

    Article  CAS  Google Scholar 

  57. B. Zhang and X.L. Ma, A review—Pitting corrosion initiation investigated by TEM, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1455.

    Article  Google Scholar 

  58. X.S. Du, Y.J. Su, J.X. Li, L.J. Qiao, and W.Y. Chu, Stress corrosion cracking of A537 steel in simulated marine environments, Corros. Sci., 65(2012), p. 278.

    Article  CAS  Google Scholar 

  59. W. Krieger, S.V. Merzlikin, A. Bashir, A. Szczepaniak, H. Springer, and M. Rohwerder, Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel, Acta Mater., 144(2018), p. 235.

    Article  CAS  Google Scholar 

  60. Z.X. Peng, J. Liu, F. Huang, Q. Hu, C.S. Cao, and S.P. Hou, Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping, Int. J. Hydrogen Energy, 45(2020), No. 22, p. 12616.

    Article  CAS  Google Scholar 

  61. R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178.

    Article  CAS  Google Scholar 

  62. M. Itakura, H. Kaburaki, M. Yamaguchi, and T. Okita, The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study, Acta Mater., 61(2013), No. 18, p. 6857.

    Article  CAS  Google Scholar 

  63. P. Yu, Y.G. Cui, G.Z. Zhu, Y. Shen, and M. Wen, The key role played by dislocation core radius and energy in hydrogen interaction with dislocations, Acta Mater., 185(2020), p. 518.

    Article  CAS  Google Scholar 

  64. T. Depover and K. Verbeken, The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism, Int. J. Hydrogen Energy, 43(2018), No. 5, p. 3050.

    Article  CAS  Google Scholar 

  65. Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo, and J.M. Cairney, Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates, Science, 367(2020), No. 6474, p. 171.

    Article  CAS  Google Scholar 

  66. L.F. Li, B. Song, Z.Y. Cai, Z. Liu, and X.K. Cui, Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel, Mater. Sci. Eng. A, 742(2019), p. 712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the National Natural Science Foundation of China (Nos. U1706221, 51922002, and 51771025), and the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-19-003C1Z). Author R. Shi would like to acknowledge the special sponsor for the Research Student Attachment Program from the graduate school of the University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-jie Qiao or Xiao-lu Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rj., Wang, Zd., Qiao, Lj. et al. Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel. Int J Miner Metall Mater 28, 644–656 (2021). https://doi.org/10.1007/s12613-020-2157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2157-2

Keywords

Navigation