Skip to main content
Log in

Comparison of Approaches to Prepare Polysiloxane-Functionalized Acrylic Latexes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Three methods were used to prepare polysiloxane-functionalized acrylic latexes via emulsion polymerization. Ethyl acrylate and 2-ethylhexyl acrylate were used in all three methods as the acrylic phase. In the first method, an acrylic core was prepared with addition of a coupling agent, 3-(trimethoxysilyl) propyl methacrylate, after which a cyclic siloxane monomer (octamethylcyclotetrasiloxane) was reacted with the coupling agent. In the second method, a silane-terminated polysiloxane (H-PDMS) was reacted with ethylene glycol dimethacrylate, and then copolymerized with ethyl acrylate and 2-ethylhexyl acrylate in a batch emulsion polymerization. In the third method, cyclic siloxane monomer was added during emulsion polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl methacrylate. Particle size distribution and particle morphology were evaluated using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. A core-shell morphology was observed in TEM for the first preparation method as proposed. After film formation, surface tension, morphology and dynamic mechanical properties were investigated. Stratification was also examined by Fourier-transform infrared spectroscopy (FT-IR) and energy dispersive X-ray (EDX). Microphase separation was observed by atomic force microscopy (AFM) after polysiloxane modification. Energy dispersive X-ray data indicated that only the second preparation method had a higher silicon content at the film-air interface than film-substrate interface. In all methods, the storage modulus and surface energy of latex films decreased after polysiloxane modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Min TI, Klein A, El-Aasser MS, Vanderhoff JW (1984) J Polym Sci Polym Chem Ed 22:2197–2215

    Article  Google Scholar 

  2. Muroi S, Hashimoto H, Hosoi K (1984) J Polym Sci Polym Chem Ed 22:1365–1372

    Article  CAS  Google Scholar 

  3. Chen Y-C, Dimonie V, El-Aasser MS (1991) J Appl Polym Sci 42:1049–1063

    Article  CAS  Google Scholar 

  4. Guyot A, Landfester K, Schork FJ, Wang C (2007) Prog Polym Sci 32:439–1461

    Article  Google Scholar 

  5. Lin M, Chua F, Guyot A, Putaux J-L, Bourgeat-Lami E (2005) Polymer 46:1331–1337

    Article  CAS  Google Scholar 

  6. Sundberg DC, Casassa AP, Pantazopoulos J, Muscato MR (1990) J Appl Polym Sci 41:1425–1442

    Article  CAS  Google Scholar 

  7. Scott RL (1949) J Chem Phys 17:279

    Article  CAS  Google Scholar 

  8. Lee DI, Ishikawa T (1983) J Polym Sci Polym Chem Ed 21:147–154

    Article  CAS  Google Scholar 

  9. Dimonie VL, El-Aasser MS, Vanderhoff JW (1988) Polym Mater Sci Eng 58:821

    CAS  Google Scholar 

  10. Zou M, Wang S, Zhang Z, Ge X (2005) Eur Polym J 41:2602–2613

    Article  CAS  Google Scholar 

  11. Stoye D, Freitag W (eds) (1998) Paints, coatings and solvents, 2nd edn. Wiley-VCH, Weinheim, pp 37–39

    Book  Google Scholar 

  12. Wagener KB, Zuluaga F, Wanigatunga S (1996) Trends in Polym Sci 4:157–163

    CAS  Google Scholar 

  13. Zou M, Huang F, Nie J, Zhang Z, Ge X (2005) Polym Int 54:861–869

    Article  CAS  Google Scholar 

  14. Lee Y, Akiba I, Akiyama S (2003) J Appl Polym Sci 87:375–380

    Article  CAS  Google Scholar 

  15. Landfester K, Pawelzik U, Antonietti M (2005) Polymer 46:9892–9898

    Article  CAS  Google Scholar 

  16. Kan CY, Liu DS, Kong XZ, Zhu XL (2001) J Appl Polym Sci 82:3194–3200

    Article  CAS  Google Scholar 

  17. Kan CY, Zhu XL, Yuan Q, Kong XZ (1997) Polym Adv Tech 8:631–633

    Article  CAS  Google Scholar 

  18. Pratt SL, Lucas GM (2012) US Patent 5216057

  19. Reddy PN, Subbaiah A, Gupta S (2004) Chatterji PR, US Patent 2004/0162399

  20. Kan CY, Kong XZ, Yuan Q, Liu DS (2001) J Appl Polym Sci 80:2251–2258

    Article  CAS  Google Scholar 

  21. He W-D, Pan C-Y (2012) J Appl Polym Sci 80:2752–2758

    Article  Google Scholar 

  22. Hill LW (1995) Dynamic mechanical and tensile properties. In: Koleske JV (ed) Paint and coating testing manual. ASTM, Philadelphia, pp 534–546

    Google Scholar 

  23. Gu Q, Lin Q, Hu CL (2005) J Appl Polym Sci 95:404

    Article  CAS  Google Scholar 

  24. Peters ACIA, Overbeek GC, Buckmann AJP, Padget JC, Annable T (1996) Prog Org Coat 29:183–194

    Article  CAS  Google Scholar 

  25. Furukawa N, Yamada Y, Furukawa M, Yuasa M, Kimura Y (1997) J Polym Sci Part A Polym Chem 35:2239–2251

    Article  CAS  Google Scholar 

  26. Racles C, Ioanid A, Toth A, Cazacu M, Cozan V (2004) Polymer 45:4275–4283

    Article  CAS  Google Scholar 

  27. Fox T (1956) Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  28. Satoh K, Urban MW (1996) Prog Org Coat 29:195–199

    Article  CAS  Google Scholar 

  29. Satoh K, Urban MW (1996) Prog Org Coat 29:195–199

    Article  CAS  Google Scholar 

  30. Patel NM, Dwight DW, Hedrick JL, Webster DC, McGrath JE (1988) Macromolecules 21(9):2689–2696

    Article  CAS  Google Scholar 

  31. Williams TR (1986) J Appl Polym Sci 31:1293–1308

    Article  CAS  Google Scholar 

  32. Adams JL, Quiram DJ, Graessley WW, Register RA, Marchand GR (1996) Macromolecules 29:2929–2938

    Article  CAS  Google Scholar 

  33. Dingenoutsand N, Ballauff M (1999) Langmuir 15:3283–3288

    Article  Google Scholar 

  34. James TG, Siedlecki CA (2001) Polym Preprints 42:689

    Google Scholar 

  35. Sung PH, Lin CY (1997) Eur Polym J 33:903–906

    Article  CAS  Google Scholar 

  36. Ozdeger E (2012) US Patent 6420480

  37. Cao S, Liu B, Deng X, Luo R, Chen H (2007) Polym Int 56:357–363

    Article  CAS  Google Scholar 

  38. Smith WV, Ewart RW (1948) J Chem Phys 16:592

    Article  CAS  Google Scholar 

  39. Delgado J, El-Aasser MS, Silebi CA, Vanderhoff JW (1987) Polym Mat Sci Eng 57:976

    CAS  Google Scholar 

  40. Capek I (2001) Adv Colloid Interface Sci 91:295–334

    Article  CAS  Google Scholar 

  41. Chern C-S, Lin C-H (2000) Polymer 41:4473–4481

    Article  CAS  Google Scholar 

  42. Barrere M, Ganachaud F, Bendejacq D, Dourges MA, Maitre C, Hemery P (2001) Polymer 42:7239–7246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Soucek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bas, S., Soucek, M.D. Comparison of Approaches to Prepare Polysiloxane-Functionalized Acrylic Latexes. Silicon 5, 139–159 (2013). https://doi.org/10.1007/s12633-012-9135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9135-x

Keywords

Navigation