Skip to main content
Log in

‘Optical and FT Infrared Absorption Spectra of Soda Lime Silicate Glasses Containing nano Fe2O3 and Effects of Gamma Irradiation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The optical absorption spectra of undoped soda lime silicate glass together with two glasses doped with either (1 % nano Fe2O3 ) or with both (1 % Nano Fe2O3 + 5 % cement dust) have been measured from 200 to 2400 nm before and after gamma irradiation with a dose of 8 Mrad. The undoped glass reveals strong UV absorption with two distinct peaks which are attributed trace ferric iron ions present as impurity. Upon gamma irradiation , this base glass exhibits three peaks at 240,310 and 340 nm and the resolution of an induced broad visible band centered at 530 nm. The two doped glasses show an additional small visible band at about 440 nm and followed by a very broad band centered at 1050 nm. Upon gamma irradiation, the two doped samples reveal the decrease of the intensities of the spectrum. The two additional bands are related to ferric (Fe+3) ions to the band at (440 nm) while and the broad band at 1050 nm is due to ferrous iron (Fe+2) ions. The decrease of the intensities of the UV-visible spectrum upon irradiation can be related to of capturing freed electrons during irradiation . Infrared spectra of the glasses reveal repetitive characteristic absorption bands of silicate groups including bending modes of Si–O–Si or O–Si–O, symmetric stretching , antisymmetric stretching and some other peaks due to carbonate , molecular water , SiOH vibrations . Upon gamma irradiation, the IR spectra reveal a small change in the base spectrum while the IR spectra of the two doped glasses remain unchanged. The change of the IR spectrum of the base glass is related to suggested changes in the bond angles or bond lengths of the mid band structural units. The doped glasses show resistance to gamma irradiation because the nano Fe2O3 can capture released electrons and positive holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shelby JE (2005) Introduction to glass science and technology, Second Edition. Royal Society of Chemistry, Cambridge UK

    Google Scholar 

  2. Bamford CR (1977) Color generation and control in glass glass science and technology 2. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  3. Moustafa FA, ELBatal FH, Fayadd AM, KL-Kashief IM (2009) Acta Phys Polonica A 116(6):333–339

    Google Scholar 

  4. Bishay A (1970) J Non-Cryst-Solids 3:54–114

    Article  Google Scholar 

  5. Friebele EJ (1991) Optical properties of glass. In: Doremus RH, Kreidl NJ (eds) The American Ceramic Society. Westerville, OH USA, pp 205–266

  6. Marzouk SY, ELBatal FH (2006) Nucl Instr Meth Phys Res (B) 248:90–102

    Article  CAS  Google Scholar 

  7. ELBatal FH, Elkheshen AA, Azooz MA, Abo-Naf SM (2008) Optic Mater 30(6):881–891

  8. Azooz MA, ELBatal FH (2009) Mater Chem Phys 117:59–67

    Article  CAS  Google Scholar 

  9. ELBatal FH, Abdelghany AM, ELBatal HA (2014) Spectrochim Acta A 122:461–488

    Article  CAS  Google Scholar 

  10. Weber MJ, Ewing RC, Arnold GW, Cormack AN, Delaye JM, Griscom DL, Hobbs LW, Navrotsky A, Price DL, Stoneham AM, Weinberg MC (1997) J Mater Res 12(8):1948–1977

  11. Sigel GH, Ginthe RJ (1968) Glass Technol 9:66–73

  12. Sigel GH (1977) Treatise on Materials Science and Technology, vol 12. In: Tomozawa Jr. M, Doremus RH (eds). Academic Press, New York, pp 61–89

  13. Cook L, Mader KH, Amer J (1982) Ceram Soc 65:690–696

  14. Duffy JA, Ingram MD (1970) J Chem Phys 52:3752–758

  15. Duffy JA (1997) Phys Chem Glasses 38:289–294

    CAS  Google Scholar 

  16. Natura U, Ehrt D (1989) Glastech Ber Glass Sci Technol 72:295–302

    Google Scholar 

  17. Monck D, Ehrt D (2005) Opt Mater 25:425–437

    Article  Google Scholar 

  18. ELBatal FH, Selim MS, Azooz MA, Marzouk SY (2007) Physica B 398:126–134

    Article  CAS  Google Scholar 

  19. Bamford CR (1962) Phys Chem Glasses 3(2):54–63

    CAS  Google Scholar 

  20. Bamford CR (1977) Colour generation and control in glass. Elsevier, Amesterdam

    Google Scholar 

  21. Tarte P (1962) Spectrochim Acta 18:467–472

    Article  CAS  Google Scholar 

  22. Wong J, Angell CA (1976) Glass Structure by Spectroscopy. Marcel Dekker, New York

    Google Scholar 

  23. Merzbacher CI, White WB (1991) J Non – Cryst Solids 130:18–30

    Article  CAS  Google Scholar 

  24. Primak W (1972) J Appl Phys 43:2745–2753

    Article  CAS  Google Scholar 

  25. Hobbs LW, Sreeram AN, Jesurum CE, Berger BA (1996) NuCl Instr Meth Phys Res (B) 116:18–26

  26. Piao F, Oldham WG, Haller EE (2000) J Non-Cryst Solids 276:61–69

  27. Abdelghany AM, ElBatal FH, Azooz MA, Ouis MA, ElBatal HA (2012) Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy 98:148–155

  28. Abdelghany AM (2010) Silicon 2(3):179–184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem A. ElBatal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElBatal, H.A., Hassaan, M.Y., Fanny, M.A. et al. ‘Optical and FT Infrared Absorption Spectra of Soda Lime Silicate Glasses Containing nano Fe2O3 and Effects of Gamma Irradiation. Silicon 9, 511–517 (2017). https://doi.org/10.1007/s12633-014-9262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9262-7

Keywords

Navigation