Skip to main content
Log in

Use of Etching to Improve Efficiency of the Multicrystalline Silicon Solar Cell by Using an Acidic Solution

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Surface texturing methods using an alkaline solution for monocrystalline Si (c-Si) solar cells have been widely accepted to improve cell performance. However, multicrystalline Si (mc-Si) cells are difficult to be texturized by alkaline etching, because the grains in the substrates are randomly oriented. In this study, we considered a HF/HNO 3/H 2O acid solution for texturing the mc-Si cells. The conversion efficiency of mc-Si solar cells textured with the solution (HF/HNO 3/H 2O = 30:1:2.5) has relatively high values. In our study, sufficient light confinement is achieved, which contributes to the improvement of both the short circuit current and the conversion efficiency of the acid textured cells. The optimal acid etching ratio HF:HNO 3:H 2O = 30:1:2.5 with etching time of 60 s and lowering 41.9 % of the R value can improve 111.8 % of the conversion efficiency (η) of the developed solar cell. More detailed information is used to measure the internal quantum efficiency (IQE) and the lifetime of minority carriers. Thus, the acid texturing approach is instrumental to achieve high efficiency in mass production using relatively low-cost mc-Si as the starting material with proper optimization of the fabrication steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng YT, Ho JJ, Lee WJ, Tsai SY, Lu YA, Liou JJ, Chang SH, Wang KL (2010) Investigation of low-cost surface processing techniques for large-size multicrystalline silicon solar cells. Int J Photoenergy:1–6. doi:10.1155/2010/268035

  2. Cheng YT, Ho JJ, Lee WJ, Tsai SY, Chen LY, Liou JJ, Chang SH, Shen H, Wang KL (2010) Efficiency improved by H2 forming gas treatment for Si-based solar cell applications. Int J Photoenergy:1–6. doi:10.1155/2010/634162

  3. Dobrzan´ski LA, Drygala A (2007) Laser processing of multicrystalline silicon for texturization of solar cells. J Mater Proc Technol 191:228–231

  4. Gangopadhyay U, Dhungel SK, Kim K, Manna U, Basu PK, Kim HJ, Karunagaran B, Lee KS, Yoo JS, Yi J (2005) Novel low cost chemical texturing for very large area industrial multicrystalline silicon solar cells. Semi Sci Technol 20:938–946

    Article  CAS  Google Scholar 

  5. Gangopadhyay U, Dhungel SK, Basu PK, Dutta SK, Saha H, Yi J (2007) Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication. Solar Energy Mater. Solar Cells 91:285–289

    Article  CAS  Google Scholar 

  6. El-Amin A A (2015) Study of the Electron Lifetime in Crystalline and Multicrystalline Si Solar Cells. Silicon 7:297–302

    Article  CAS  Google Scholar 

  7. Goetzberger A, Hebling C, Schock H-W (2003) Photovoltaic materials history status and outlook. Mater Sci Eng Res 40:1–46

    Article  Google Scholar 

  8. Hauser A, Melnyk I, Fath P, Narayanan S, Roberts S, Bruton TM (2003) A simplified process for isotropic texturing of ms-Si. In: Proceedings of the WCPEC 3, Osaka Japan

  9. Ho JJ, Chen CY, Huang CY, Lee WJ, Liou WR, Chang CC (2005) Ion-assisted sputtering deposition of antireflection film coating for flexible liquid-crystal display. Appl Opt 44(29):6176–6180

    Article  CAS  Google Scholar 

  10. Hsu JC, Lee CC (1998) Single- and dual-ion-beam sputter deposition of titanium oxide films. Appl Opt 37 (7):1171–1176

    Article  CAS  Google Scholar 

  11. Kittidachachan P, Markvart T, Bagnall DM, Greef R, Ensell GJ (2007) A detailed study of p–n junction solar cells by means of collection efficiency. Solar Energy Mater. Solar Cells 91:160–166

    Article  CAS  Google Scholar 

  12. Lipin´ski M, Panek P, Ciach R (2003) The industrial technology of crystalline silicon solar cells. J Optoelec Adv Mater 5(5):1365–1371

    Google Scholar 

  13. Macdonald DH, Cuevas A, Kerr MJ, Samundsett C, Ruby D, Winderbaum S, Leo A (2004) Texturing industrial multicrystalline silicon solar cells. Solar Energy 76:277–283

    Article  CAS  Google Scholar 

  14. Nelson J (2005) The physics of solar cells. World Scientific Pub., London (Chapter 1.1 and 8)

  15. Nishimoto Y, Ishihara T, Namba K (1999) Investigation of acidic texturization for multicrystalline silicon solar cells. J Electrochem Soc 146(2):457–461

    Article  CAS  Google Scholar 

  16. Panek P, Lipin´ ski M, Dutkiewicz J. (2005) Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells. J Mater Sci 40:1459–1463

  17. Poullikkas A (2010) Technology and market future prospects of photovoltaic systems. Int. Energy & Environ. Found., 617–634

  18. Robbins H, Schwartz B (1959) Chemical etching of silicon I. J Electrochem Soc 106:505–508

    Article  CAS  Google Scholar 

  19. Robbins H, Schwartz B (1960) Chemical etching of silicon II. J Electrochem Soc 107:108–111

    Article  CAS  Google Scholar 

  20. Robbins H, Schwartz B (1961) Chemical etching of Silicon III. J Electrochem Soc 108:365–372

    Article  Google Scholar 

  21. Shimura F (1989) Semiconductor Silicon Crystal Technology:184–186

  22. Singh PK, Kumar R, Lal M, Singh SN, Das BK (2001) Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Solar Energy Mater Solar Cells 70:103–113

    Article  CAS  Google Scholar 

  23. Steinert M, Acker J, Henge A, Wetzig K (2005) Experimental studies on the mechanism of wet chemical etching of silicon in HF/ HNO3 mixtures. J Electrochem Soc 152(12):C843—C850

    Article  Google Scholar 

  24. Sze SM (2002) Semiconductor devices-physics and technology, second ed. John Wiley and Sons Inc. (Chapter 13)

  25. Yair EE, David S (2003) Silicon texturing in alkaline media conducted under extreme negative potentials. Electrochem Solid State Lett 6(3):C47—C50

    Google Scholar 

  26. Yang C, Wu H, Melkote S, Danyluk S (2013) Comparative analysis of fracture strength of slurry and diamond wire sawn multicrystalline silicon solar wafers. Adv Eng Mater 15:358–365

    Article  CAS  Google Scholar 

  27. Meng H, ZhouMechanical L (2014) Behavior of diamond-sawn multi-crystalline silicon wafers and its improvement. Silicon 6:129–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Ahmed El-Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Amin, A.A. Use of Etching to Improve Efficiency of the Multicrystalline Silicon Solar Cell by Using an Acidic Solution. Silicon 9, 39–45 (2017). https://doi.org/10.1007/s12633-015-9320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9320-9

Keywords

Navigation