Skip to main content
Log in

Green Nanosilver as Reinforcing Eco-Friendly Additive to Epoxy Coating for Augmented Anticorrosive and Antimicrobial Behavior

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Epoxy resin GY250 representing diglycidyl ethers of bisphenol-A (DGEBA) was reinforced with 1, 3 and 5wt % of surface functionalized silver nanoparticles (F-AgNPs) which were synthesized using Couroupita guianensis leaves extract with a view of augmenting the corrosion control property of the epoxy resin and also imparting antimicrobial activity to epoxy coatings on mild steel. Corrosion resistance of the coatings was evaluated by EIS, potentiodynamic polarization studies and cross scratch tests. AFM, SEM, HRTEM and EDX were utilized to investigate the surface topography, morphology and elemental composition of the coatings on MS specimens. Results showed that the corrosion resistance, hardness and Tg of the DGEBA/F-AgNPs coatings increased at 1wt % of F- AgNPs. The DGEBA/F-AgNPs coatings also offered manifold antimicrobial protection to the MS surfaces by inhibiting the growth of biofilm forming bacteria like P. aeruginosa, B. subtilis, the most common human pathogen E. coli and the most virulent human pathogenic yeast C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debaditya B, Rajinder G (2005) Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25:199–204

    Article  Google Scholar 

  2. Lee BI, Qi L, Copel T (2005) Nanoparticles for materials design: present & future. J Ceram Process Res 6:31–40

    Google Scholar 

  3. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with non-bleaching multicolor optical immuneolabels. PNAS 97:996–1001

    Article  CAS  Google Scholar 

  4. Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na + poly(γ- glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf B 59:171–178

    Article  CAS  Google Scholar 

  5. Mallick K, Witcombb MJ, Scurrella MS (2005) Self-assembly of silver nanoparticles in a polymer solvent Formation of a nanochain through nanoscale soldering. Mater. Chem. Phys. 90:221–224

    Article  CAS  Google Scholar 

  6. Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sono-electrochemical methods. Electrochem. Commun. 6:1163–1168

    Article  CAS  Google Scholar 

  7. Smetuna AB, Klabunde KJ, Sorensea CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening stabilization with various agents, and their 3-D and 2-D super lattice formation. J. Colloid Interface Sci. 284:521–526

    Article  Google Scholar 

  8. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92:1709–1727

    Article  CAS  Google Scholar 

  9. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346

    Article  CAS  Google Scholar 

  10. Goffeau A (2008) Drug resistance: the ?ght against fungi. Nature 452:541–542

    Article  CAS  Google Scholar 

  11. Morones JR, Elechiguerra JL, Camacho A, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  12. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27:76–83

    Article  CAS  Google Scholar 

  13. Hernandez LA, Hernandez LS, Rodriguez-Reyna SL (2012) Evaluation of corrosion behavior of galvanized steel treated with conventional conversion coatings and a chromate-free organic inhibitor. Int J of Corros 2102:1–8

    Article  Google Scholar 

  14. Hang TX, Truca TA, Olivier MG, Vandermiers C, Guéritc N, Pébèred N (2010) Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay. Prog. Org. Coat. 69:410–416

    Article  CAS  Google Scholar 

  15. Shokry H (2009) Corrosion protection of mild steel electrode by electrochemical polymerization of acrylamide. Chem of Met and Alloys 2:202–210

    Google Scholar 

  16. Amitha Rani BE, Bharathi Basu BJ (2012) Green inhibitors for corrosion protection of metals and alloys: An Overview. Int J of Corros 2012:1–15

    Article  Google Scholar 

  17. Lee H, Neville K (1952) Handbook of Epoxy Resins. Mc Graw Hill, New York

    Google Scholar 

  18. Barletta M, Lusvarghi L, Mantini FP, Rubino G (2007) Epoxy-based thermosetting powder coatings: Surface appearance scratch, adhesion and wear resistance. Surf Coat Int 20:7479–7504

    Article  Google Scholar 

  19. Yan M, Vetter CA, Gelling VJ (2013) Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys. Corros. Sci. 70:37–45

    Article  CAS  Google Scholar 

  20. Sharifirad M, Omrani A, Rostami AA, Khoshroo M (2010) Electrodeposition and characterization of polypyrrole films on copper. J. Electroanal. Chem. 645:149–158

    Article  CAS  Google Scholar 

  21. Gergely A, Pfeifer E, Bertóti I, Török T, Kálmán E (2011) Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole. Corros. Sci. 53:3486–3499

    Article  CAS  Google Scholar 

  22. Spinks GM, Dominis AJ, Wallace GG, Tallman DE (2002) Electroactive conducting polymers for corrosion control, Part2. Ferrous metals. J. Solid State Electrochem. 6:85–100

    Article  CAS  Google Scholar 

  23. Sathiyanarayanan S, Azim SS, Venkatachari G (2007) A new corrosion protection coating with p o l y a n i l i n e−−T i O 2 composite for steel. Electrochim. Acta 52:2068–2074

    Article  CAS  Google Scholar 

  24. Mathivanan L, Radhakrishna S (1998) Protection of steel structures in industries with epoxy-silicone based coatings. Anti Corros Methods Mater 45:301–305

    Article  Google Scholar 

  25. Armelin E, Pla R, Liesa F, Ramis X, Iribarren JI, Aleman C (2008) Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paints. Corros. Sci. 50:721–728

    Article  CAS  Google Scholar 

  26. Tjong SC, Haydn C (2004) Nanocrystalline materials and coatings. Mater. Sci. Eng. R 45:1–88

    Article  Google Scholar 

  27. Veprek S, Argon AS (2001) Mechanical properties of super hard nanocomposites. Surf. Coat. Technol. 146:175–182

    Article  Google Scholar 

  28. Wetzel B, Haupert F, Qiu ZM (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63:2055–2067

    Article  CAS  Google Scholar 

  29. Perreux D, Suri C (1997) A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes. Compos. Sci. Technol. 57:1403–1413

    Article  CAS  Google Scholar 

  30. Shi X, Nguyen TA, Suo Z, Liu Y, Avci R (2009) Effect of nanoparticles on the anti- corrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 204:237–245

    Article  CAS  Google Scholar 

  31. Ayman MA, Shaker NO, Maysour NE (2006) Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog. Org. Coat. 56:100–110

    Article  Google Scholar 

  32. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674

    Article  CAS  Google Scholar 

  33. Lam K, Lau KT (2006) Localized elastic modulus distribution of nanoclay/epoxy composites by using nanoindentation. Composite Structures 75:553–558

    Article  Google Scholar 

  34. Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2003) Friction and wear of low nanometer Si 3 N 4 filled epoxy composites. Wear 254:784–796

    Article  CAS  Google Scholar 

  35. Hartwig A, Sebald M, Putz D, Aberle L (2005) Preparation, characterisation and properties of nanocomposites based on epoxy resins - an overview. Macromol. Symp. 221:127–136

    Article  CAS  Google Scholar 

  36. Dietsche F, Thomann Y, Thomann R, Mulhaupt R (2000) Translucent acrylic nano-c omposites containing anisotropic laminated nano-particles derived from intercalated layered silicates. J. Appl. Polym. Sci. 75:396–405

    Article  CAS  Google Scholar 

  37. Zhou SX, Wu LM (2002) Preparation technology and product development of nanocomposite coatings. Mater Rev 16:41–43

    Google Scholar 

  38. Stamataskis P, Palmer BR (1990) Optimum particle size of titanium dioxide and zinc oxide for attenuation of ultraviolet radiation. J. Coatings Technol. 62:95–102

    Google Scholar 

  39. Hu ZS, Dong JX, Chen GX (2000) Preparation and tribological properties of nanoparticle lanthanum borate. Wear 243:43–47

    Article  CAS  Google Scholar 

  40. Donald RB, Paul EB, El-Azab AA (2003) Enhancing coating functionality using nanoscience and nanotechnology. Prog. Org. Coat. 47:342–356

    Article  Google Scholar 

  41. Skaff H, Emrick T (2004) Reversible addition fragmentation chain transfer polymerization from the surface of unprotected CdSe nanoparticles. Angew. Chem. Int. Ed. 43:5383–5386

    Article  CAS  Google Scholar 

  42. Peng Q, Lai DMY, Kang ET, Neoh KG (2006) Preparation of polymer silicon (100) hybrids via interface-initiated reversible addition fragmentation chain-transfer (RAFT) polymerization. Macromolecules 39:5577–5582

    Article  CAS  Google Scholar 

  43. Taniguchi Y, Ogawa M, Gang W, Saitoh H, Fujiki K, Yamauchi T, Tsubokawa N (2008) Preparation of hyperfunctional carbon black by grafting of hyperbranched polyester onto the surface. Mater. Chem. Phys. 108:397–402

    Article  CAS  Google Scholar 

  44. Huong N (2006) Improvement of bearing strength of laminated composites by nano clay and Z- pin reinforcement. PhD Thesis. University of New South Wales, Australia

    Google Scholar 

  45. Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high functionality epoxy resins. Polymer 43:4365–4373

    Article  CAS  Google Scholar 

  46. Yang LH, Liu FC, Han E (2005) Effects of P/B on the properties of anticorrosive coatings with different particle size. Prog. Org. Coat. 53:91–98

    Article  CAS  Google Scholar 

  47. Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS (2007) Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self healing ability. Prog. Org. Coat. 58:127–135

    Article  CAS  Google Scholar 

  48. Atta AM, Shaker NO, Abdou MI, Abdelfatah M (2006) Synthesis and characterization of high thermally stable poly (Schiff) epoxy coatings. Prog. Org. Coat. 56:91–99

    Article  CAS  Google Scholar 

  49. Kaan Emregul C, Duzgun E, Atakol O (2006) The application of some polydentate schiff base compounds containing aminic nitrogens as corrosion inhibitors for mild steel in acidic media. Corros. Sci. 48:3243–3260

    Article  Google Scholar 

  50. Monticelli C, Brunoro G, Frignani A, Marchi A (1986) Inhibitive action of some schiff bases and amines towards the corrosion of copper in an aqueous alcoholic medium. Surf. Coat. Technol. 27:175–186

    Article  CAS  Google Scholar 

  51. Patel S, Navin P, Patel JS, Harshad AJ (2000) Study on novel epoxy based poly (schiff reagents). Polym Mater 46:499–509

    Article  CAS  Google Scholar 

  52. Manjumeena R, Girilal M, Peter M, Kalaichelvan PT (2013) Augmenting potential antifungal activity of Gandhaka Rasayana (Asiddha compound) using green synthesized silver nanoparticles from couroupita guianensis leaf extract against selected pathogenic strains. Int Res J Pharm 4:234–239

    Article  Google Scholar 

  53. Duraibabu D, Ganeshbabu T, Manjumeena R, Ananda kumar S, Priya D (2014) Unique coating formulation for corrosion and microbial prevention of mild steel. Prog. Org. Coat. 77:657–664

    Article  CAS  Google Scholar 

  54. Winston RR, Herbert UH (2008) Corrosion and corrosion control, An introduction to corrosion science and engineering 4th ed., John Wiley & Sons.

  55. Sinebryukhov SL, Gnedenkov AS, Mashtalyar DV, Gnedenkov SV (2010) PEO-coating/substrate interface investigation by localized electrochemical impedance spectroscopy. Surf. Coat. Technol. 205:1697–1701

    Article  CAS  Google Scholar 

  56. Gabrielli G, Keddam V (1992) Review of applications of impedance and noise analysis to uniform and localized corrosion. Corrosion 48:794–811

    Article  CAS  Google Scholar 

  57. Walter GW (1991) The application of impedance spectroscopy to study the uptake of sodium chloride solution in painted metals. Corros. Sci. 32:1041–1058

    Article  CAS  Google Scholar 

  58. Patil RN, Sharma BV, Mahanwar PA (2012) Corrosion performance of hybrid epoxy resin coatings with electrochemical impedance spectroscopy. Pelagia Research Library 3:458–467

    CAS  Google Scholar 

  59. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectro chemistry 72:149–154

    Article  CAS  Google Scholar 

  60. Tsai CH, Mansfeld F (1993) Determination of coating deterioration with EIS: Part II. development of a method for field testing of protective coatings. Corrosion 49:726–737

    Article  CAS  Google Scholar 

  61. Grundmeier G, Schmidt W, Stratmann M (2000) Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta 45:2515–2533

    Article  CAS  Google Scholar 

  62. Kending M, Scully J (1990) Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corrosion 46:22–29

    Article  Google Scholar 

  63. Madhankumar A, Rajendran N, Nishimura T (2012) Influence of Si nanoparticles on the electrochemical behavior of organic coatings on carbon steel in chloride environment. J. Coat. Technol. Res. 9:609–620

    Article  CAS  Google Scholar 

  64. Saravanan P, Duraibabu D (2014) Studies on silicon containing nano- hybrid epoxy coatings for the protection of corrosion and bio-Fouling on mild steel, Silicon, doi:10.1007/s12633-014-9202-6

  65. Abraham R, Thomas SP, Kuryan S, Isac J, Varughese KT, Thomas S (2009) Mechanical properties of ceramic-polymer nanocomposites. Express Polym Lett 3:177–189

    Article  CAS  Google Scholar 

  66. Behzadnasab M, Mirabedini SM, Kabiri K, Jamali S (2011) Corrosion performance of epoxy coatings containing silane treated ZrO 2 nanoparticles on mild steel in 3.5 % NaCl solution. Corros. Sci. 53:89–98

    Article  CAS  Google Scholar 

  67. Ramezanzadeh B, Attar MM, Farzam M (2011) A study on the anticorrosion performance of the epoxy–polyamide nanocomposites containing ZnO nanoparticles. Prog Org Coat 72:410–422

    Article  CAS  Google Scholar 

  68. Kanimozhi K, Devaraju S, Vengatesan MR, Selvaraj V, Alagar M (2013) Studies on synthesis and characterization of surface-modified mullite fibre-reinforced epoxy nanocomposites. High Perform. Polym. 25:658–667

    Article  Google Scholar 

  69. Zainuddin S, Hosur MV, Zhou Y, Alfred Narteh T, Ashok K, Jeelani S (2010) Experimental and numerical investigations on flexural and thermal properties of nano- clay epoxy nanocomposites. Mater. Sci. Eng. A 527:7920–7926

    Article  Google Scholar 

  70. Tianxi L, Wuiwui CT, Yuejin T, Chaobin H, Sok SG, Tai SC (2004) Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J. Appl. Polym. Sci. 94:1236–1244

    Article  Google Scholar 

  71. Arthananareeswari M, Sankara Narayanan TSN, Kamaraj P, Tamilselvi M (2012) Polarization and impedance studies on zinc phosphate coating developed using galvanic coupling. J. Coat. Technol. Res. 9:39–46

    Article  Google Scholar 

  72. Gazala R, Dhawan SK (2014) Conducting polymer nano composite epoxy coatings for anticorrosive applications, Modern Electro chemical Methods in Nano. Sur and Corro Sc 90:137

    Google Scholar 

  73. Creus J, Mazille H, Idrissi H (2000) Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf. Coat. Technol. 130:224–232

    Article  CAS  Google Scholar 

  74. Mafi R, Mirabedini SM, Naderi R, Attar MM (2008) Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings. Corros. Sci. 50:3280–3286

    Article  CAS  Google Scholar 

  75. Heidariana M, Shishesaz MR, Kassiriha SM, Nematollahi M (2010) Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultra sonication assisted process. Prog. Org. Coat. 68:180–188

    Article  Google Scholar 

  76. El-Sayed MS, Potgieter JH, Comins JD, Cornish L, Olubambi PA, Machio CN (2009) Effects of minor additions of Ruthenium on the passivation of duplex stainless-steel corrosion in concentrated hydrochloric acid solutions. J. Appl. Electrochem. 39:1385– -1392

    Article  Google Scholar 

  77. El-Sayed MS (2012) Effects of exposure time on the anodic dissolution of Monel-400 in aerated stagnant sodium chloride solutions. J. Solid State Electrochem. 16:891–899

    Article  Google Scholar 

  78. El-Sayed MS (2012) Corrosion of duplex stainless steel alloy 2209 in acidic and neutral chloride solutions and its passivation by Ruthenium as an alloying element. Int. J. Electrochem. Sci. 7:2374–2388

    Google Scholar 

  79. Ma H, Chen S, Niu L, Zhao S, Li S, Li D (2002) Inhibition of copper corrosion by several schiff bases in aerated halide solutions. J. Appl. Electrochem. 32:65–72

    Article  CAS  Google Scholar 

  80. Mohammad Asif A, El-Sayed MS, Al-Zahrani M (2013) Fabrication of various epoxy coatings for offshore applications and evaluating their mechanical properties and corrosion behavior, Int. J. Appl. Electrochem. 8:3121–3131

    Google Scholar 

  81. Anne Pauline S, Kamachi Mudali U, Rajendran N (2013) Fabrication of nanoporous Sr incorporated TiO 2 coating on 316L SS: Evaluation of bioactivity and corrosion protection. Mater. Chem. Phys. 142:27–36

    Article  CAS  Google Scholar 

  82. Deflorian F, VB MisÏkovicÂ-Stankovic VB, Bonora PL, Fedrizzi L (1994) Degradation of Epoxy Coatings on Phosphatized Zinc-Electroplated Steel. Corrosion 50:438–446

  83. Ayman MA, El-Mahdy GA, Al-Lohedan HA (2013) Corrosion inhibition efficiency of modified silver nanoparticles for carbon steel in 1 M HCl. Int. J. Electrochem. Sci. 8:4873–4885

    Google Scholar 

  84. VB MisÏkovicÂ-Stankovic VB, MR Stanic MR, DrazÏic DM (1999) Corrosion protection of aluminium by a cataphoretic epoxy coating. Prog. Org. Coat. 36:53–63

  85. Kendig M, Mansfeld F, Tsai S (1983) Determination of the long term corrosion behavior of coated steel with A.C. impedance measurements. Corros. Sci. 23:317–329

    Article  CAS  Google Scholar 

  86. Ananda Kumar S, Balakrishnan T, Alagar M, Denchev Z (2006) Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Prog. Org. Coat. 55:207–217

    Article  CAS  Google Scholar 

  87. Shailesh KD, Khanna AS, Jai Mangal ST (2009) Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog. Org. Coat. 64:371–382

    Article  Google Scholar 

  88. Kalendova A (2003) Effects of particles sizes and shapes of zinc metal on the properties of anticorrosive coatings. Prog. Org. Coat. 46:324–332

    Article  CAS  Google Scholar 

  89. Kavitha C, Priya Dasan K (2013) Nanosilver/hyperbranched polyester (HBPE): synthesis, characterization, and antibacterial activity. J. Coat. Technol. Res. 10:669–678

    Article  CAS  Google Scholar 

  90. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275:177– 182

    Article  CAS  Google Scholar 

  91. Li Y, Leung P, Yao L, Song Q, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  Google Scholar 

  92. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71:7589–7593

    Article  CAS  Google Scholar 

  93. Kim K, Woo SS, Bo KS, Seok-Ki M, Jong-Soo C, Jong GK, Dong GL (2009) Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22:235– 242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manjumeena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjumeena, R., Venkatesan, R., Duraibabu, D. et al. Green Nanosilver as Reinforcing Eco-Friendly Additive to Epoxy Coating for Augmented Anticorrosive and Antimicrobial Behavior. Silicon 8, 277–298 (2016). https://doi.org/10.1007/s12633-015-9327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9327-2

Keywords

Navigation