Skip to main content
Log in

Recycling of Iron Sintered Wastes Into Nanoparticles Barium Hexaferrite and Zinc-Ferrite Glass-Ceramics

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

About 25 % of iron oxides in the sintering process are wastes. In this paper, sintered waste (SW) was used as a source of iron oxides to prepare both hard and soft magnetic glass-ceramics via a melting-quenching technique. About 71 % by wt. of sintered waste was used for preparing soft magnetic glass-ceramics, while ∼46 % was used for preparing hard magnetic glass-ceramics. The comparison between ferrimagnetic glass-ceramics prepared from pure chemicals and that from sintered waste before and after heat treatment was studied. X-ray diffraction shows crystallization of both hematite and Zn-ferrite phases in sintered waste while pure Zn-ferrite or Ba-hexaferrite phases were crystallized in soft magnetic and hard magnetic glass-ceramics, prepared from sintered waste, respectively. Transmission electron microscopy determined the crystalliza- tion of nano-particles ∼20 nm and <15 nm for soft and hard magnetic glass-ceramics respectively. Vibrating scanning magnetometry revealed a significant increase in saturation magnetization from ∼26 emu/g for sintered waste to ∼44 emu/g in soft magnetic glass ceramics while it decreased to ∼12 emu/g for hard magnetic glass-ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombo P, Brustain G, Bernardo E, Scarinci G (2003) Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci 7 :225

    Article  CAS  Google Scholar 

  2. Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes. A review. J Mater Sci 41:733

    Article  CAS  Google Scholar 

  3. Romero M, Rincon JM (1998) Preparation and properities of high iron oxide content glasses obtained from industrial wastes. J Eur Ceram Soc 18:153

    Article  CAS  Google Scholar 

  4. Pelino M, Karamanov A, Pisciella P, Crisucci S, Zoneti D (2002) Vitrification of electric arc furnace dusts waste management. Waste Manag 22:945

    Article  CAS  Google Scholar 

  5. Kavouras P (2007) EAFD-loaded vitreous and glass-ceramic materials. J Eur Ceram Soc 27:2317

    Article  CAS  Google Scholar 

  6. Karamanov A, Aloisi M, Pelino M (2007) Virification of copper flotation waste. J Hazard Mater 140:333

    Article  CAS  Google Scholar 

  7. Francis AA, Rawlings RD, Boccaccini AR (2002 ) Glass-ceramics from mixtures of coal ash and soda-lime glass by the petrurgic method. J Mater Sci Lett 21:975

    Article  CAS  Google Scholar 

  8. United Nations Environment Programme (UNEP) (2003) Standardized toolkit for identification and quantification of dioxin and furan releases. UNEP Chemicals, Switzerland, p 60

    Google Scholar 

  9. Cetas TC, Gross EJ, Contractor Y (1998) A ferrite core/metallic sheath thermoseed for interstitial thermal therapies. IEEE Trans Biomed Eng 45:68

    Article  CAS  Google Scholar 

  10. Takegami K, Sano T, Wakabayashi H, Sonoda J, Yamazaki T, Morita S, Shibuya T, Uchida A (1998) New ferromagnetic bone cement for local hyperthermia. J Biomed Mater Res 43 :210

    Article  CAS  Google Scholar 

  11. Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413

    Article  CAS  Google Scholar 

  12. Gomez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of spherical magnetite biodegradable polymer composite particles. J Colloid Interf Sci 240:40

    Article  CAS  Google Scholar 

  13. Lee YK, Kim DH, Lee YJ, Kim KN, Shim IB (2003) Ceramics cells and tissues. Eighth annual seminar and meeting, Faenza

  14. Borrelli et al (1982) US patent 4, 323

  15. Kokubo T, Yamamuro T, Ebisawa Y, Ohura K (1990) European patent 361797

  16. Ebisawa Y, Miyaji F, Kokubo T, Ohura K, Nakamura T (1997) Bioactivity of ferromagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2. J Ceram Soc Jpn 105:947

    Article  CAS  Google Scholar 

  17. Oh SH, Choi SY, Lee YK, Kim KN (2001) Research on annihilation of cancer cells by glass-ceramics for cancer treatment with external magnetic field. I. Preparation and cytotoxicity. J Biomed Mater Res 54:360

    Article  CAS  Google Scholar 

  18. Arcos D, del Real RP, Vallet-Regi M (2002) A novel bioactive and magnetic biphasic material. Biomaterials 23:2151

    Article  CAS  Google Scholar 

  19. Horo M O, Steinitz R (1968) Characterization of devetrification of an iron-containing glass by electrical and magnetic properities. Mater Res Bull 3:117

    Article  Google Scholar 

  20. Auric P, Dang NV, Bandyopadhyay AK, Zarzycki J (1982) Superparamagnetism and ferrimagnetism of the small particles of magnetite in a silicate matrix. J Non-Cryst Solids 50:97

    Article  CAS  Google Scholar 

  21. Strand Z (1983) Glass ceramics materials. SNTL, Praha

    Google Scholar 

  22. Bretcanu O, Spriano S, Verne, Coisson E, Tiberto M, Allia P (2005) The influence of crystallized Fe3O4 on the magnetic properities of coprecipitation derived ferromagnetic glass-ceramics. ActaBiomater 1:421

    CAS  Google Scholar 

  23. Abdel-Hameed S A M, Hessien MM, Azooz MA (2009) Preparation and characterization of some ferromagnetic glass-ceramics contains high quantity of magnetite. Ceram Int 35:1539

    Article  CAS  Google Scholar 

  24. Abdel-Hameed S A M, Elkady AM (2012) Effect of different additions on the crystallization behavior and magnetic properties of magnetic glass ceramic. J Adv Mater 3:167

    CAS  Google Scholar 

  25. Shirk BT, Buessem WR (1970) Magnetic properties of barium ferrite formed by crystallization of a glass. J Am Ceram Soc 53:192

    Article  CAS  Google Scholar 

  26. Gornert P, Sinn E, Schuppel W, Pfeiffer H, Rosler M, Schubert T, Jurisch M, Sellger R (1990) Structural and magnetic properties of BaFe12-2xCox TixO19 powders prepared by the glass crystallization method. IEEE Trans Magn 26:12

    Article  Google Scholar 

  27. Evans BJ, Hafner SS, Weber HP (1971) Electric field gradients at 57Fe in ZnFe 2O 4 and CdFe 2O 4. J Chem Phys 55:5282

    Article  CAS  Google Scholar 

  28. Attallah SS, Fayek MK (2000) Effect of Cu substitution on conductivity of Ni-Al ferrite. J Phys Chem Solids 61:1529

    Article  Google Scholar 

  29. Mahmoud MH, Hamdeh HH, Ho JC, O’Shea MJ, Walker JC (2000) Mossbauer studies of manganese ferrite fine particles processed by ball-milling. J Magn Magn Mater 220:139

    Article  CAS  Google Scholar 

  30. Lee C-K, Speyer RF (1994) Glass formation and crystallization of barium ferrite in the Na2 O-BaO-Fe2O3 SiO2 system. J Mater Sci 29:1348

    Article  CAS  Google Scholar 

  31. Muller R, Ulbrich C, Schuppel W, Steinmetz H, Steinbeib E (1999) Preparation and properties of barium-ferrite containing glass-ceramics. J Eur Ceram Soc 19:1547

    Article  CAS  Google Scholar 

  32. Rezlescu L, Rezlescu E, Popa PD, Rezlescu N (1999) Fine barium hexaferrite powder prepared by the crystallisation of glass. J Magn Magn Mater 193:288

    Article  CAS  Google Scholar 

  33. Sohn S-B, Choi S-Y, Shim I-B (2002) Preparation of Ba-ferrite containing glass-ceramics in BaO–Fe2O3–SiO2. J Magn Magn Mater 293:533

    Article  Google Scholar 

  34. Abdel-Hameed S A M, Marzouk MA, Abdel-Ghany AE (2011) Magnetic properties of nanoparticles glass-ceramics rich with copper ions. J Non-Cryst Solids 357:3888

    Article  CAS  Google Scholar 

  35. Safarikova M, Safarik I (2001) The application of magnetic techniques in biosciences. Magn Electr Sep 10:223

    Article  CAS  Google Scholar 

  36. El-Shennawi AWA (1985). J Eng Sci 1:25

    Google Scholar 

  37. Sharif I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903

    Article  Google Scholar 

  38. El-Shennawi AWA, Moris MM, Khater GA, Abdel-Hameed S A M (1998) Thermodynamic investigation of crystallization behavior of pyroxenic basalt-based glasses. J Therm Anal 51:553– 560

    Article  CAS  Google Scholar 

  39. Haynes WM (ed) (2011) CRC handbook of chemistry and physics, 92nd edn. CRC Press, Boca Raton. ISBN 1439855110

  40. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York

  41. Roy MK, Haldar B, Verma HC (2006) Characteristic length scales of nanosize zinc ferrite. Nanotechnology 17:232

    Article  CAS  Google Scholar 

  42. Bretcanu O, Verne’ E, Coisson M, Allia P (2006) Temperature effect on the magnetic properties of the coprecepitation derived ferromagnetic glass-ceramics. J Magn Mater 300:412

    Article  CAS  Google Scholar 

  43. Abdel-Hameed S A M, Elwan RL (2012) Effect of La2O3, CoO, Cr2O3 and MoO3 nucleating agents on crystallization behavior and magnetic properties of ferromagnetic glass–ceramic in the system Fe2O3CaOZnOSiO2. J Mater Res Bull 47:1233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa A. M. Abdel-Hameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Hameed, S.A.M., M., I.H. & Erfan, N.A. Recycling of Iron Sintered Wastes Into Nanoparticles Barium Hexaferrite and Zinc-Ferrite Glass-Ceramics. Silicon 10, 153–163 (2018). https://doi.org/10.1007/s12633-016-9410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9410-3

Keywords

Navigation