Skip to main content
Log in

Effect of Cu and Zr Co-doped SiO2 Nanoparticles on the Stability of Phases (Quartz-Tridymite-Cristobalite) and Degradation of Methyl Orange at High Temperature

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

SiO2 nanoparticles doped by 10 mol% Zr and 10 mol% Cu were prepared via the sol-gel method in a controled process. The effects of doping and calcination temperature on the structural and photo-catalytic properties of SiO2 nanopowders were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. The phases of cristobalite, quartz and tridymite were found at a calcinations temperature range of 800 to 1000 °C and only cristobalite phase was formed at a temperature of 1200 °C. The degradation of methyl orange was examined under visible light radiation indicating that the effect of doped elements (Zr, Cu) on SiO2 reduces the band gap effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flörke OW (1955). Ber Dtsch Keram Ges 32:369–381

    Google Scholar 

  2. Flörke OW (1961). Ber Dtsch Keram Ges 38(3):89–97

    Google Scholar 

  3. Hill VG, Roy R (1958). Trans Brit Ceram Soc 57:496–510

    CAS  Google Scholar 

  4. Hill VG, Roy R (1958). Am Ceram Soc 4l(12):532–537

    Article  Google Scholar 

  5. Tuttle OF, England JL (1955). Bull Geol Soc Am 66:149–152

    Article  CAS  Google Scholar 

  6. Esparza M, Ojeda ML (2005). J Mol Catal A 228(1–2):97–110

    Article  CAS  Google Scholar 

  7. Schlottig F, Textor M, Georgi U, Roewer G (1999). J Mater Sci Lett 18(8):599–601

    Article  CAS  Google Scholar 

  8. Mahadik SA, Kavale MS, Mukherjee SK, Venkateswara AR (2010). Appl Surf Sci 257(2):333–339

    Article  CAS  Google Scholar 

  9. Keizer AE, Koopal LK (1998). Colloids Surf, A 142(2–3):303–313

    Article  Google Scholar 

  10. Chunlei G, Miao J, Liu Y, Wang Y (2010). J Mater Sci 45(20):5660–5668

    Article  Google Scholar 

  11. Musso F, Sodupe M, Corno M, Ugliengo P (2009). J Phys Chem C 113:17876–17884

    Article  CAS  Google Scholar 

  12. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2005). J Mol Catal A Chem 244:160–167

    Article  Google Scholar 

  13. Yamashita H, Nakao H, Takeuchi M, Nakatani Y, Anpo M (2003). Nucl Inst Methods Phys Res B 206:898–901

    Article  CAS  Google Scholar 

  14. Mellott NP, Durucan C, Pantano CG, Guglielmi M (2006). Thin Solid Films 502:112–120

    Article  CAS  Google Scholar 

  15. Leonardelli S, Facchini L, Fretigny C, Tougne P, Legrand AP (1992). J Am Chem Soc 114:6412–6418

    Article  CAS  Google Scholar 

  16. Civalerri B, Garonne E, Ugliengo P (1998). Chem Phys Lett 294:103–108

    Article  Google Scholar 

  17. Zhuravlev LT (2000). Colloids Surf, A 173:1–38

    Article  CAS  Google Scholar 

  18. Bartram ME, Michalske TA, Rogers JW (1991). J Phys Chem 95:4453–4463

    Article  CAS  Google Scholar 

  19. Chuang IS, Maciel GE (1997). J Phys Chem B 101:3052–3064

    Article  CAS  Google Scholar 

  20. Sindorf DW, Maciel GE (1983). J Am Chem Soc 105:1487–1493

    Article  CAS  Google Scholar 

  21. Mortensen JJ, Parrinello M (2000). J Phys Chem B 104:2901–2907

    Article  CAS  Google Scholar 

  22. Du MH, Kolchin A, Cheng HP (2003). J Chem Phys 119:6418–6422

    Article  CAS  Google Scholar 

  23. Iarlori SI, Ceresoli D, Bernasconi M, Donadio D, Parrinello M (2001). J Phys Chem B 105:8007–8013

    Article  CAS  Google Scholar 

  24. Vigné-Maeder F, Sautet P (1997). J Phys Chem B 101:8197–8203

    Article  Google Scholar 

  25. Mahadevan TS, Garofalini SH (2008). J Phys Chem C 112:1507–1515

    Article  CAS  Google Scholar 

  26. Walsh TR, Wilson M, Sutton AP (2000). J Chem Phys 113:9191–9201

    Article  CAS  Google Scholar 

  27. Band PJ, Hensley AL Jr (1968). J Phys Chem 72:2926–2933

    Article  Google Scholar 

  28. Perez-Robles JF, Gonzales-Hernandez J (1999). J Phys Chem Solids 60:1729–1733

    Article  CAS  Google Scholar 

  29. De Sousa EMB, Porto AO, Schilling PJ, Alves MCM, Mohallem NDS (2000). J Phys Chem Solids 61:853–859

    Article  CAS  Google Scholar 

  30. Najibi Ilkhechi N, Koozegar-Kaleji B (2014). J Sol-Gel Sci Technol 69:351–356

    Article  Google Scholar 

  31. Buckley A, Greebblatt M (1992). J Non-Cryst Solids 146:97–110

    Article  CAS  Google Scholar 

  32. Ogale SB, Bilukar PG, Mate N, SKanetkar M, Parikh N, Patnaik M (1992) J Appl Phys 72:3765–3772

    Article  CAS  Google Scholar 

  33. Benjaram MR, Biswajit C, Panagiotis GS (2001). Appl Catal A Gen 211:19–30

    Article  Google Scholar 

  34. Aguilar DH, Torres-Gonzalez LC, Torres-Martinez LM (2000). J Solid State Chem 158:349–357

    Article  Google Scholar 

  35. Robertson J (2002). Mater Sci Bul 27:217–222

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasrollah Najibi Ilkhechi or Behzad Koozegar Kaleji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilkhechi, N.N., Kaleji, B.K., Mozammel, M. et al. Effect of Cu and Zr Co-doped SiO2 Nanoparticles on the Stability of Phases (Quartz-Tridymite-Cristobalite) and Degradation of Methyl Orange at High Temperature. Silicon 9, 293–299 (2017). https://doi.org/10.1007/s12633-016-9416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9416-x

Keywords

Navigation