Skip to main content
Log in

Role of Temperature on the Phase Modification of TiO2 Nanoparticles Synthesized by the Precipitation Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Nanostructured TiO2 samples have been synthesized successfully by a simple precipitation method. The prepared samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), photoluminescence (PL) spectroscopy, ultra violet (UV) spectroscopy and Raman spectroscopy respectively. The as-prepared TiO2 nanoparticls appear to be a single anatase phase with average crystalline size 37.68 nm at 150 C and found to be transformed from anatase to rutile phase during the annealing of samples in the temperature range from 150 C to 600 C. The TEM images indicate the particle sizes are in the range between 12 and 25 nm for anatase phase TiO2 at 400 C and 30–45 nm for rutile phase TiO2 at 600 C. The luminescence property of the TiO2 nanoparticles studied by the emission properties confirms the presence of defect levels caused by the oxygen vacancies. Raman spectroscopy was used to identify and quantity the amorphous and crystalline TiO2 phases. FTIR studies reveal weak complex vibrations between the titanium and oxygen species and also additional unsaturated sites (Ti3+) through incorporation of (OH) groups, not otherwise seen in bulk TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balachandaran K, Venckatesh R, Sivaraj R (2010) Synthesis of Nano TiO2-SiO2 composite using sol-gel method: effect on size, surface morphology and thermal stability. Int J Eng Sci Technol 2:3695–3700

    Google Scholar 

  2. Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  CAS  PubMed  Google Scholar 

  3. Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 25:811–814

    Article  CAS  Google Scholar 

  4. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663

    Article  CAS  PubMed  Google Scholar 

  5. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 9:1947–1949

    Article  Google Scholar 

  6. Dong LF, Cui ZL, Zhang ZK (1997) Gas sensing properties of nano-ZnO prepared by arc plasma method. Nanostruct Mater 8:815–823

    Article  CAS  Google Scholar 

  7. Pal M, Serrano JG, Santiago P, Pal U (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C 111:96–102

    Article  CAS  Google Scholar 

  8. Chena Y-F, Leec C-Y, Yenga M-Y, Chiua H-T (2003) The effect of calcination temperature on the crystallinity of TiO2 nanopowders. J Cryst Growth 247:363–370

    Article  Google Scholar 

  9. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  10. Comini E, Ferroni M, Guidi V, Faglia G, Martinelli G, Sberveglieri G (2002) Nanostructured mixed oxides compounds for gas sensing applications. Sens Actuators B Chem 84:26–32

    Article  CAS  Google Scholar 

  11. Zeng W, Liu T, Wang Z, Tsukimoto S, Saito M, Ikuhara Y (2010) Oxygen adsorption on anatase TiO2 (101) and (001) surfaces from first principles. Mater Trans 51:171–175

    Article  CAS  Google Scholar 

  12. Pradhan SS, Pradhan SK, Bhavanasi V, Sahoo S, Sarangi SN, Anwar S, Barhai PK, Pradhan SS (2012) Low temperature stabilized rutile phase TiO2 films grown by sputtering. Thin Solid Films 520:1809

    Article  CAS  Google Scholar 

  13. Ali A, Zareen S, Irfan M (2014) The effect of annealing temperatures on phase and optical properties of TiO2 nanoparticles for solar cell applications. Eur Sci J 2:447–450

    Google Scholar 

  14. Wang W, Gu B, Liang L, Hamilton W A, Wesolowski D J (2004) Synthesis of Rutile α-TiO2 nanocrystals with controlled size and shape by low-temperature hydrolysis: effects of solvent composition. J Phys Chem B 108:14789–14792

    Article  CAS  Google Scholar 

  15. Kanna M, Wongnawa S (2008) Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: characterization and photocatalytic study. Mater Chem Phys 110:166–175

    Article  CAS  Google Scholar 

  16. Hidalgo MC, Bahnemann D (2005) Highly photoactive supported TiO2 prepared by thermal hydrolysis of TiOSO4: optimisation of the method and comparison with other synthetic routes. Appl Catal B Environ 61:259–266

    Article  CAS  Google Scholar 

  17. Xia X H, Liang Y, Wang Z, Fan J, Luo Y S, Jia Z J (2008) Synthesis and photocatalytic properties of TiO2 nanostructures. Mater Res Bull 43:2187–2195

    Article  CAS  Google Scholar 

  18. Zhang X, Zhou M, Lei L (2005) Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Appl Catal A Gen 282:285–293

    Article  CAS  Google Scholar 

  19. Banerjee I, Karmakar S, Kulkarni N V, Nawale A B, Mathe V L, Das A K, Bhoraskar S V (2010) Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor. J Nanopart Res 12:581–590

    Article  CAS  Google Scholar 

  20. Mohammadi MR, Fray DJ, Cordero-Cabrera MC (2007) Sensor performance of nanostructured TiO2 thin films derived from particulate sol–gel route and polymeric fugitive agents. Sens Actuators B 124:74–83

    Article  CAS  Google Scholar 

  21. Dennis Christy P, NirmalaJothi NS, Melikechi N, Sagayaraj P (2009) Synthesis, structural and optical properties of well dispersed anatase TiO2 nanoparticles by non-hydrothermal method. Cryst Res Technol 44:484–488

    Article  CAS  Google Scholar 

  22. Liao M H, Hsu C H, Chen D H (2006) Preparation and properties of amorphous titania-coated zinc oxide nanoparticles. J Solid State Chem 179:2020–2026

    Article  CAS  Google Scholar 

  23. Xie Y, Liu X, Huang A., Ding C, Chu PK (2005) Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 26:6129–6135

    Article  CAS  PubMed  Google Scholar 

  24. Dong J, Yao X, Bo H, Dong W, Yuhan S (2008) A simple non-aqueous route to anatase TiO2. Eur J Inorg Chem 2008:1236–1240

    Article  CAS  Google Scholar 

  25. Malladi S, Mallikarjunagouda BP, Ravindra SV, Sangamesh AP, Tejraj MA (2006) Novel dense poly (vinyl alcohol)–TiO2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30 C. J Mem Sci 281:95–102

    Article  CAS  Google Scholar 

  26. Colombo DP Jr, Roussel KA, Sach J, Skinner DE, Cavaleri JJ, Bowman RM (1995) Chem Phys Lett 232:207

    Article  CAS  Google Scholar 

  27. Dennis Christy P, NirmalaJothi NS, Melikechi N, Sagayaraj P (2009) Synthesis, structural and optical properties of well dispersed anatase TiO2 nanoparticles by non-hydrothermal method. Cryst Res Technol 44:484–488

    Article  CAS  Google Scholar 

  28. Khanna P K, Singh N, Shobhit C (2007) Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA. Mat Lett 61:4725–4730

    Article  CAS  Google Scholar 

  29. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors give grateful thanks to the TEM facility for Sophisticated Test and Instrumentation Centre, Cochin, XRD, PL, TGA and Raman Spectroscopy for IISc, Bangalore, and FTIR, UV for Government Engineering College, Burgur, for providing instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Anilkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaivani, T., Anilkumar, P. Role of Temperature on the Phase Modification of TiO2 Nanoparticles Synthesized by the Precipitation Method. Silicon 10, 1679–1686 (2018). https://doi.org/10.1007/s12633-017-9652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9652-8

Keywords

Navigation