Skip to main content
Log in

Development of High-Efficiency PERC Solar Cells Using Atlas Silvaco

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents the results of an investigation of Passivated Emitter Rear Cell (PERC) solar cell technology and the current understanding of the fundamental device physics. The research work has been focused on the influence of the bulk lifetime, the incident angle of the solar radiation, and temperature dependence on electrical properties of the considered PERC solar cell by using TCAD-ATLAS Silvaco. Also, this paper shows the best results obtained recently and some guidelines to improve still more the efficiency of the devices. The optimization at 300 K led to the following results Jsc = 41.70 mA/cm2, Voc = 0.727 V, FF = 80.53 %, P\(_{{\max }} =\) 244.439 W/m− 2, and η = 24.44 % which are close with those found in different research works. This technology provides a better electrical control over the cell and thus leads to valuable improvements in device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swanson RM (2005) Approaching the 29% limit efficiency of silicon solar cells, Conference Record of the 31st IEEE PVSC, Orlando, FL, 889

  2. Guney MS (2016) Solar power and application methods. Renew Sust Energ Rev 57:776–785

    Article  Google Scholar 

  3. Boukortt N, Patanè S, Hadri B (2018) Electrical Characterization of n-ZnO/c-Si 2D Heterojunction Solar Cell by Using TCAD Tools Silicon 10:1, https://doi.org/10.1007/s12633-017-9750-7

  4. Dullweber T, et al (2014) Fine line printed 5 busbar PERC solar cells with conversion efficiencies beyond 21%, 29th EU PV Solar Energy Conference, pp 621

  5. Ye F, et al (2016) 22.13% Efficient Industrial p-Type Mono PERC Solar Cell Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 3360–3365

  6. Green MA, Blakers AW, Kurianski J, Narayanan S, Shi J, Szpitalak T, Taouk M, Wenham SR, Willison MR (1984) Ultimate performance silicon solar cells, Final Report, NERDDP Project 81/1264, 83

  7. Blakers AW, Wang A, Milne AM, Zhao J, Green MA (1989) 22.8% efficient silicon solar cell. Appl Phys Lett 55:1363–1365

    Article  CAS  Google Scholar 

  8. Green MA (2015) The Passivated Emitter and Rear Cell (PERC): From conception to mass production. Sol Energy Mater Sol Cells 143:190–197

    Article  CAS  Google Scholar 

  9. Mat Desa MK et al (2016) Silicon back contact solar cell configuration: A pathway towards higher efficiency. Renew Sust Energ Rev 60:1516–1532

    Article  CAS  Google Scholar 

  10. Rawat A et al (2014) Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers. Sol Energy 110:691–703

    Article  CAS  Google Scholar 

  11. Silvaco International (2016) Atlas user’s manual device simulation software (Santa Clara: Silvaco International)

  12. Stem N, Cid M (2001) Studies of phosphorus gaussian profile emitter silicon solar cells. Mat Res 4(2):143–148

    Article  CAS  Google Scholar 

  13. Kløwa F, Hauga H, Erik Fossa S (2013) Surface recombination velocity measurements of metallized surfaces by photoluminescence imaging. Enrgy Proced 43:18–26

    Article  Google Scholar 

  14. Chen Z et al (1993) Plasma-enhanced chemical-vapor-deposited oxide for low surface recombination velocity and high effective lifetime in silicon. J of Appl Phys 74:2856. https://doi.org/10.1063/1.354638

    Article  CAS  Google Scholar 

  15. Schultz O et al (2004) Short communication: Accelerated publication: Multicrystalline silicon solar cells exceeding 20% efficiency. Prog Photovolt Res Appl 12:553–558. https://doi.org/10.1002/pip.583

    Article  CAS  Google Scholar 

  16. Cuevas A, Macdonald D (2004) Measuring and interpreting the lifetime of silicon wafers. Sol Energy 76:255–262. https://doi.org/10.1016/j.solener.2003.07.033

    Article  CAS  Google Scholar 

  17. Smets AH et al (2016) Solar energy: The physics and engineering of photovoltaic conversion, technologies and systems UIT Cambridge Ltd

  18. Gérenton F et al (2015) Pattern of partial rear contacts for silicon solar cells. Enrgy Proced 77:677–686

    Article  Google Scholar 

  19. Diouf D, Kleidera JP, Desruesb T, Ribeyronb P-J (2010) Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Enrgy Proced 2:59–64

    Article  CAS  Google Scholar 

  20. Dahlinger M, Carstens K (2016) Optimized laser doped back surface field for IBC solar cells. Enrgy Proced 92:450–456

    Article  CAS  Google Scholar 

  21. Wolf A et al (2010) Comprehensive analytical model for locally contacted rear surface passivated solar cells. J APPL PHYS 108:124510

    Article  Google Scholar 

  22. Yang G et al (2016) IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Sol Energy Mater Sol Cells 158:84–90

    Article  CAS  Google Scholar 

  23. Shaker A, Zekry A (2010) A new and simple model for plasma- and doping-induced band gap narrowing. J Electron Devices 8:293–299

    Google Scholar 

  24. Mat Desa MK et al (2016) Silicon back contact solar cell configuration: A pathway towards higher efficiency. Renew Sust Energ Rev 60:1516–1532

    Article  CAS  Google Scholar 

  25. Hernández Como N, Morales Acevedo A (2010) Simulation of heterojunction silicon solar cells with AMPS-1D. Sol Energy Mater Sol Cells 94:62–67

    Article  Google Scholar 

  26. Renewable Resource Data Center (2004) National Renewable Energy Laboratory http://rredc.nrel.gov/solar/spectra/am1.5/

  27. Deng W, et al (2015) 20.8% Efficient PERC Solar Cell on 156 mmx156 mmp-Type Multi-Crystalline Silicon Substrate Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd

  28. Kiefer F et al (2013) Influence of solder pads to PERC solar cells for module integration. Enrgy Proced 38:368–374

    Article  CAS  Google Scholar 

  29. Yang G et al (2016) IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Sol Energ Mat Sol C 158:84–90

    Article  CAS  Google Scholar 

  30. Antonius R (2015) FFE IBC cells: Impact of busbars on cell performance with circuit modelling. Enrgy Proced 77:21–28

    Article  Google Scholar 

  31. Wiley J, Sons I (2001) Physics of semiconductor devices. 2nd ed

Download references

Acknowledgments

This work was partially supported by Semiconductor Laboratory (GE01/08), Kuwait University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Boukortt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukortt, N., Patanè, S. & Hadri, B. Development of High-Efficiency PERC Solar Cells Using Atlas Silvaco. Silicon 11, 145–152 (2019). https://doi.org/10.1007/s12633-018-9838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9838-8

Keywords

Navigation