Skip to main content

Advertisement

Log in

Erosive-Corrosive Wear of Aluminium-Silicon Matrix (AA336) and SiCp/TiB2p Ceramic Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper mainly reports a comparative study on the Erosion-Corrosion of aluminium silicon alloy (AA336) and its composites as AA336-7%SiC and AA336-7%TiB2 in Basic, acidic, marine atmosphere. Particulate Microstructure shows the hexagonal shape of TiB2 particles and irregular shape with edges for silicon carbide particles. Erosion-corrosion of aluminium alloy composites were performed at different erodent concentrations (40,60,80 weight percentage) and at a speed of 1000,1500 revolution/minute. It is marked by the study that composites show significantly improved wear resistance (less material loss) than alloy at all speeds and all concentrations except in basic medium. Field emission scanning electron microscope (FESEM) reveals Al-Si interface sites are the preferential site for corrosion attack. Addition of reinforcement particles reduces the metallic area for erodent attack hence composites shows less material loss than the alloy. Among composites Titanium diboride reinforced composite shows improve wear resistance irrespective of speed, slurry concentration and slurry medium. Erosion-corrosion found prominent mode of weight (wt) loss at 1000 rpm and at 1500 rpm abrasion-corrosion found a prominent mode of material removal. In case of basic medium material removal at 1000 rpm is more than 1500 rpm irrespective of material. Material removal in basic media is maximum and minimum in the marine medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

wt:

Weight

rpm:

Revolution per minute

EDS:

Energy dispersive spectrometer

References

  1. Rawal S (2001) Metal matrix composites for space applications. JOM 53(4):14–17

    Article  CAS  Google Scholar 

  2. Postlethwaite J, Tinker EB, Hawrylak MW (1974) Erosion-corrosion in slurry pipelines. Corrosion 30 (8):285–290

    Article  CAS  Google Scholar 

  3. Miracle DB (2001) Aeronautical applications of metal matrix composites. JOM 53(4):12–16

    Article  Google Scholar 

  4. Nicholas T (1995) An approach to fatigue life modelling in titanium-matrix composites. Mater Sci Eng A 200:29–37

    Article  Google Scholar 

  5. Madsen BW (1988) Measurement of erosion-corrosion synergism with a slurry wear test apparatus. Wear 123:127–142

    Article  CAS  Google Scholar 

  6. Levin BF, DuPont JN, Marder AR (1995) Wear 181–183:810

    Article  Google Scholar 

  7. Aiming F, Jinming L, Ziyum T (1995) Wear 181–183:876

    Article  Google Scholar 

  8. Qian Wang B (1995) Wear 188:40

    Article  Google Scholar 

  9. Modi OP, Saxena M, Prasad BK, Yagneswaran AH, Vaidya ML (1992) J Mater Sci 27:3897–3902

    Article  CAS  Google Scholar 

  10. Yao HY, Zhu RZ (1998) Corrosion 54(7):499–503

    Article  CAS  Google Scholar 

  11. Pinto L, Zshech E (1996) Mater Sci Forum 217–222:1593–1601

    Article  Google Scholar 

  12. Sun H, Koo EY, Wheat HG (1991) Corrosion 47:741–748

    Article  CAS  Google Scholar 

  13. Yu SY, Ishic H, Chung TH (1996) Metall Mater Trans A 27A:2653–2662

    Article  CAS  Google Scholar 

  14. Tsutsuii M, Yamada Y (1996) J Jpn Inst Met 56:271–278

    Article  Google Scholar 

  15. Hihara LH, Latinision RM (1994) Int Mater Rev 39:245–262

    Article  CAS  Google Scholar 

  16. Rohatgi PK (2000) In: Clyne TW (ed) Comprehensive composite materials, vol 3. Elsevier Pub. Ltd., pp 481–500

  17. Saraswathi YL, Das S, Mondal DP (2001) Corrosion 57:643–663

    Article  CAS  Google Scholar 

  18. Das S, Mondal DP, Dasgupta R, Prasad BK (1999) Wear 236:295–302

    Article  CAS  Google Scholar 

  19. Prasad BK (2000) Wear 238:151–159

    Article  CAS  Google Scholar 

  20. Tomilson WJ, Mathews SJ (1994) J Mater Sci Lett 13:170–173

    Article  Google Scholar 

  21. Modi OP, Prasad BK, Dasgupta R, Jha AK, Mondal DP (1999) Mater Sci Technol 15:933–938

    Article  CAS  Google Scholar 

  22. Das S, Mondal DP, Modi OP, Dasgupta R (1999) Wear 231:195–205

    Article  CAS  Google Scholar 

  23. Tomilson WJ, Mathews SJ (1994) Cavitation erosion of aluminium alloy matrix/ceramic composites. J Mater Sci Lett 13:170–173

    Article  Google Scholar 

  24. Modi OP, Prasad BK, Dasgupta R, Jha AK, Mondal DP (1999) Erosion corrosion characteristic of squeeze cast Aluminium alloy/SiC composites in water and sodium chloride solution cotaining sand. Mater Sci Technol 15:933–950

    Article  CAS  Google Scholar 

  25. Saxena M, Modi OP, Prasad BK, Jha AK (1993) Erosion corrosion characteristic of aluminium alloy–alumina fiber composites. Wear 169:119–124

    Article  CAS  Google Scholar 

  26. Modi OP, Prasad BK, Yegneswaran AH, Vaidya ML (1992) Dry sliding wear of squeeze cast aluminium alloy/SiC composites. Mater Sci Eng A 151:235

    Article  Google Scholar 

  27. Prasad BK (2000) Effect of alumina particle dispersion on the erosive corrosive wear response of a Zn based alloy under changing slurry condition and distance. Wear 238:151–159

    Article  CAS  Google Scholar 

  28. Das S, Mondal DP, Modi OP, Dasgupta R (1999) Influence of experimental parameters on the erosive corrosive wear of aluminium–SiC particle composites. Wear 231:195–205

    Article  CAS  Google Scholar 

  29. Das S, Mondal DP, Dasgupta R, Prasad BK (1999) Mechanism of material removal during erosion corrosion of Al–SiC particle composites. Wear 236:295–302

    Article  CAS  Google Scholar 

  30. Mondal DP, Das S, Prasad BK (1998) Study of erosive corrosive wear characteristic of an Al alloy composites through factorial design experiments. Wear 217:1–6

    Article  CAS  Google Scholar 

  31. Turenne S, Chitgny Y, Simrod D, Caron S, Masounave J (1990) The effect of abrasive particle size on the slurry erosion resistance of particulate reinforced aluminium alloy composites. Wear 141:147–158

    Article  CAS  Google Scholar 

  32. Wang A, Hutchings IM (1989) Two-body abrasive wear of alumina fiber–aluminium matrix composite. Mater Sci Technol 5:71–76

    Article  CAS  Google Scholar 

  33. Caron S, Thibault P, Turenne S, Hamel FG, Masouhave J (1989) . In: Proceedings of the conference processing of ceramic and metal matrix composites, Halifax, Canada, 20–24, August 1989. Peragamon Press, New York, p 424

  34. Trazaskoma PP (1990) Pit morphology of Al alloy and SiC/Al alloy metal matrix composites. Corrosion 46:402

    Article  Google Scholar 

  35. Milosev L, Metikos-Hukovic M (1991) J Electrchem Soc 138(1):6–10

    Article  Google Scholar 

  36. Muller IL, Galvele JR (1977) Pitting potential of high purity binary Al alloys–Al–Cu alloys. Corros Sci 17:179–193

    Article  CAS  Google Scholar 

  37. Davis JR (ed) (1993) ASM specialty handbook—aluminum and aluminum alloys. ASM International, p 579

  38. Patel SK et al (2018) The slurry abrasive wear behaviour and microstructural analysis of A2024-SiC-ZrSiO4 metal matrix composite. Ceram Int 44(6):6426–6432

    Article  CAS  Google Scholar 

  39. Singh RK, Telang A, Khan M M (2017) Effect of T6 heat treatment on microstructure, mechanical properties and abrasive wear response of fly ash reinforced Al-Si alloy. Mater Today: Proc 4(9):10062–10068

    Google Scholar 

  40. Namini AS et al (2015) Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite. Int J Refract Met Hard Mater 51:169–179

    Article  CAS  Google Scholar 

  41. Chen F et al (2015) TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater Sci Eng A 625:357–368

    Article  CAS  Google Scholar 

  42. Farhadi K et al (2016) Characterization of hot pressed SiC whisker reinforced TiB2 based composites. Int J Refract Met Hard Mater 61:84–90

    Article  CAS  Google Scholar 

  43. Selvaraj SK, Nagarajan MK, Kumaraswamidhas LA (2017) An investigation of abrasive and erosion behaviour of AA 2618 reinforced with Si3N4, AlN and ZrB2 in situ composites by using optimization techniques. Arch Civil Mech Eng 17(1):43–54

    Article  Google Scholar 

  44. Kumar GS P et al (2016) Corrosion behaviour of TiB2 reinforced aluminium based in situ metal matrix composites. Perspect Sci 8:172–175

    Article  Google Scholar 

  45. Saraswathi Y L, Das S, Mondal DP (2006) Influence of microstructure and experimental parameters on the erosion–corrosion behavior of Al alloy composites. Mater Sci Eng A 425(1–2):244–254

    Article  CAS  Google Scholar 

  46. Bucevaca D, Krstic V (2012) Microstructure–mechanical properties relations in SiC–TiB2 composite. Mater Chem Phys 133:197–204

    Article  CAS  Google Scholar 

  47. Singh V, Kumar S, Panwar RS, Panday OP (2012) Microstructures and wear behaviour of dual reinforced particle (DRP) aluminium alloy composite. J Mater Sci 47:6633–6646

    Article  CAS  Google Scholar 

  48. Kumar S, Panwar RS, Pandey OP (2012) Wear behavior at high temperature of dual-particle size zircon-sand-reinforced aluminum alloy composite. The Minerals, Metals & Materials Society and ASM International 44A:1548–1565

  49. Uyyuru RK, Surappa MK, Brusethaug S (2007) Tribological behavior of Al–Si–SiCp composites/automobile brake pad system under dry sliding conditions. Tribol Int 40:365–373

  50. Saraswathi YL, Das S, Mondal DP (2001) Corrosion 57:643–663

    Article  CAS  Google Scholar 

  51. Saraswathi YL, Das S, Mondal DP (2001) A comparative study of corrosion behavior of Al–SiCp composites with cast iron. Corrosion 57(7):643–660

    Article  CAS  Google Scholar 

  52. Bertolini L, Brunella MF, Candiani S (1999) Corrosion behaviour of particulate metal matrix composites. Corrosion 55(4):422–428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Dixit, G. Erosive-Corrosive Wear of Aluminium-Silicon Matrix (AA336) and SiCp/TiB2p Ceramic Composites. Silicon 11, 1649–1660 (2019). https://doi.org/10.1007/s12633-018-9981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9981-2

Keywords

Navigation