Skip to main content
Log in

Extraction and Characterization of Nano-Silica from Olive Stones

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silica nanostructures are promising carriers for a variety of applications in biological and material sciences. Currently, there is a growing interest in the extraction of silica nanostructures from agriculture by-product and waste. Here we investigate the extraction of nanostructured silica from olive stone using an alkali leaching extraction method. The nature of chemical bonding of extracted powder was characterized using a Fourier transform infrared (FTIR) absorption spectroscopy. The morphology and elemental composition of the as-extracted powder were studied by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS), respectively. The results show that the as-extracted powder consists of agglomeration of semi- spherical nano-sized particles of silica SiO2. Micrographs of transmission electron microscopy (TEM) reveal the formation of several hundred-nanometer sized particles, which are composed of agglomerated 15–68 nm porous silica nano-grains. X-ray diffraction (XRD) and FTIR results confirm that the as-extracted amorphous silica transforms into a crystalline (cristobalite) phase upon sintering it at 900 °C. The data presented in this study could allow the extraction of porous silica nanoparticles from olive stones for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arivalagan K, Ravichandran S, Rangasamy K, Karthikeyan E (2011). Int J ChemTech Res 3(2):534–538

    Google Scholar 

  2. Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction to nanomaterials and nanotechnology. Tartu University Press, Ukraine

    Google Scholar 

  3. Tolba GM, Barakat NA, Bastaweesy A, Ashour E, Abdelmoez W, El-Newehy MH, Al-Deyab SS, Kim HY (2015) Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. J Ind Eng Chem 29:134–145

    CAS  Google Scholar 

  4. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol 34(7):588–599

    CAS  PubMed  Google Scholar 

  5. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 8(11):7278–7308

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer K-H, Keck CM, Jacob C (2017) Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants 7(1):3

    PubMed Central  Google Scholar 

  7. Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290

    CAS  Google Scholar 

  8. Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M (2000) Ullmann's Encyclopedia of Industrial Chemistry

  9. Pek YS, Wan AC, Shekaran A, Zhuo L, Ying JY (2008) A thixotropic nanocomposite gel for three-dimensional cell culture. Nat Nanotechnol 3(11):671–675

    CAS  PubMed  Google Scholar 

  10. Jittabut P (2015) Effect of Nanosilica on Mechanical and Thermal Properties of Cement Composites for Thermal Energy Storage Materials. Energy Procedia 79:10–17

    CAS  Google Scholar 

  11. Sun L, Gong K (2001) Silicon-Based Materials from Rice Husks and Their Applications. Ind Eng Chem Res 40(25):5861–5877

    CAS  Google Scholar 

  12. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh P, Srivastava S, Chakrabarti P, Singh SK (2017) Nanosilica based electrochemical biosensor: A novel approach for the detection of platelet-derived microparticles. Sensors Actuator B Chem 240:322–329

    CAS  Google Scholar 

  14. O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomedicine 1(4):451–472

    PubMed  PubMed Central  Google Scholar 

  15. Bergna HE, Roberts WO (2005) Colloidal silica: fundamentals and applications. CRC Press

  16. Tao Z (2014) Mesoporous silica-based nanodevices for biological applications. RSC Adv 4(36):18961–18980

    CAS  Google Scholar 

  17. Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 139:515–520

    CAS  PubMed  Google Scholar 

  18. An D, Guo Y, Zhu Y, Wang Z (2010) A green route to preparation of silica powders with rice husk ash and waste gas. Chem Eng J 162(2):509–514

    CAS  Google Scholar 

  19. Pa FC, Chik A, Bari MF (2016) Palm ash as an alternative source for silica production. In: MATEC Web of Conferences. EDP Sciences, p 01062, 78

  20. Norsuraya S, Fazlena H, Norhasyimi R (2016) Sugarcane Bagasse as a Renewable Source of Silica to Synthesize Santa Barbara Amorphous-15 (SBA-15). Procedia Eng 148:839–846

    CAS  Google Scholar 

  21. Pukird S, Chamninok P, Samran S, Kasian P, Noipa K, Chow L (2017) JMMM 19 (2)

  22. Chanadee T, Chaiyarat S (2016). JMES 7(7):2369–2374

    CAS  Google Scholar 

  23. Shaikh IR, Shaikh AA (2013) Res. J Chem Sci 3(11):66–72

    Google Scholar 

  24. Batchelor L, Loni A, Canham L, Hasan M, Coffer J (2012) Manufacture of Mesoporous Silicon from Living Plants and Agricultural Waste: An Environmentally Friendly and Scalable Process. Silicon 4(4):259–266

    CAS  Google Scholar 

  25. Sadasivan S, Rasmussen DH, Chen FP, Kannabiran R (1998) Preparation and characterization of ultrafine silica. Colloids Surf A Physicochem Eng Asp 132(1):45–52

    CAS  Google Scholar 

  26. Faizul CP, Abdullah C, Fazlul B (2013) Review of extraction of silica from agricultural wastes using acid leaching treatment. In: Advanced Materials Research. Trans Tech Publ, pp 997–1000

  27. Liou T-H (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A 364(1–2):313–323

    Google Scholar 

  28. Sivasubramanian S, Sravanthi K (2015). Int J Pharm Bio Sci 6(1):530–536

    CAS  Google Scholar 

  29. Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) Preparation of nano-silica materials: The concept from wheat straw. J Non-Cryst Solids 356(50–51):2781–2785

    CAS  Google Scholar 

  30. Liou T-H, Yang C-C (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mat Sci Eng B 176(7):521–529

    CAS  Google Scholar 

  31. Rodríguez G, Lama A, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99(13):5261–5269

    PubMed  Google Scholar 

  32. Pattara C, Cappelletti G, Cichelli A (2010) Recovery and use of olive stones: Commodity, environmental and economic assessment. Renew Sust Energ Rev 14(5):1484–1489

    CAS  Google Scholar 

  33. Fernandez-Bolanos J, Felizon B, Heredia A, Rodrıguez R, Guillen R, Jimenez A (2001) Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 79(1):53–61

    CAS  PubMed  Google Scholar 

  34. Bohli T, Ouederni A, Fiol N, Villaescusa I (2015) Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. C R Chim 18(1):88–99

    CAS  Google Scholar 

  35. Ordoudi SA, Bakirtzi C, Tsimidou MZ (2018). Recy 3(1):9

    Google Scholar 

  36. Lancaster LC (2015) Innovative vaulting in the architecture of the Roman empire: 1st to 4th centuries CE. Cambridge University Press

  37. Mohammad AM (2006) Commodity Brief (9):1–12

  38. Borghesi A, Sassella A, Pivac B, Pavesi L (1993) Characterization of porous silicon inhomogeneities by high spatial resolution infrared spectroscopy. Solid State Commun 87(1):1–4

    CAS  Google Scholar 

  39. Benesi H, Jones A (1959) An Infrared Study of the Water-Silica Gel System. J Phys Chem 63(2):179–182

    CAS  Google Scholar 

  40. Ghorbani F, Younesi H, Mehraban Z, Celik MS, Ghoreyshi AA, Anbia M (2013) Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. J Taiwan Inst Chem Eng 44(5):821–828

    CAS  Google Scholar 

  41. Swann GE, Patwardhan S (2011) Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Clim Past 7(1):65–74

    Google Scholar 

  42. Fröhlich F (1989) Deep-sea biogenic silica: new structural and analytical data from infrared analysis - geological implications. Terra Nova 1(3):267–273

    Google Scholar 

  43. Fidalgo A, Ilharco LM (2001) The defect structure of sol–gel-derived silica/polytetrahydrofuran hybrid films by FTIR. J Non-Cryst Solids 283(1–3):144–154

    CAS  Google Scholar 

  44. Ying JY, Benziger JB (1992) Structural characterization of silica during sintering. Nanostruct Mater 1(2):149–154

    CAS  Google Scholar 

  45. Nayak J, Bera J (2009) Effect of sintering temperature on phase-formation behavior and mechanical properties of silica ceramics prepared from rice husk ash. Phase Transit 82(12):879–888

    CAS  Google Scholar 

  46. Gupta P, Colvin V, George S (1988) Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces. Phys Rev B 37(14):8234–8243

    CAS  Google Scholar 

  47. Dastan D, Panahi SL, Chaure NB (2016). J Mater Sci Mater Electron 27(12):12291–12296

    CAS  Google Scholar 

  48. Dastan D, Chaure N, Kartha M (2017). J Mater Sci Mater Electron 28(11):7784–7796

    CAS  Google Scholar 

  49. Real C, Alcala MD, Criado JM (1996) Preparation of Silica from Rice Husks. J Am Ceram Soc 79(8):2012–2016

    CAS  Google Scholar 

  50. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch. Springer, pp 387–409

  51. Shinohara Y, Kohyama N (2004) Quantitative Analysis of Tridymite and Cristobalite Crystallized in Rice Husk Ash by Heating. Ind Health 42(2):277–285

    CAS  PubMed  Google Scholar 

  52. Sarkar R, Acharya M (2017) Sintered porous balls from rice husk for thermal insulation in iron and steel industries. Ironmak Steelmak 44(9):649–655

    CAS  Google Scholar 

  53. Markovska I, Lyubchev L (2007) A Study on the thermal destruction of rice husk in air and nitrogen atmosphere. J Therm Anal Calorim 89(3):809–814

    CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Prof. I. Othman the director general of the AECS and the head of molecular biology and biotechnology department for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naddaf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naddaf, M., Kafa, H. & Ghanem, I. Extraction and Characterization of Nano-Silica from Olive Stones. Silicon 12, 185–192 (2020). https://doi.org/10.1007/s12633-019-00112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00112-w

Keywords

Navigation