Skip to main content
Log in

Multifaceted Application of Silica Nanoparticles. A Review

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Nanoparticles have immense industrial, biotechnological, and biomedical/pharmaceutical applications due to their pliability in structure, size, biocompatibility, high surface area, and versatile functionalization, which have led to their ubiquitous application in diverse areas Advancement of the science in the research field has revolutionized our lifestyle and health care from medicine to the agricultural field but there were also some negative impacts of this development apart from the benefits. Nanotechnology has been one of the ladders responsible for this revolution which has to some extent decreased the adverse effects. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become favoured as nanostructuring, drug delivery, and optical imaging agents. Silica nanoparticles are immensely stable, less toxic. Mesoporous silica materials with pore sizes in the range between 2 and 50 nm have attracted widespread attention due to their precisely tuneable macroscopic form, chemical functionality, and mesoporous structure. Silica has been also applied for the remediation of the environment pollutants like to carry out enhanced oil recovery to reduce the liberation of brine, heavy metals and radioactive compounds into water, removal of metals, non-metals and radioactive elements,water purification. This article reviews the important applications of silica nanoparticles from the medicine, agricultural field to the environmental bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X-q L, W-x Z (2006) Iron nanoparticles: the Core−Shell structure and unique properties for Ni(II) sequestration. Langmuir. 22(10):4638–4642

    Google Scholar 

  2. Maribel G, Guzmán JD, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2:104

  3. Rodríguez-Sánchez L, Blanco MC, López-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104(41):9683–9688

    Google Scholar 

  4. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96

    CAS  Google Scholar 

  5. Raspolli Galletti AM, Antonetti C, Marracci M, Piccinelli F, Tellini B (2013) Novel microwave-synthesis of cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl Surf Sci 280:610–618

    CAS  Google Scholar 

  6. Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles: A photochemical synthesis route. J Mater Sci 39(14):4459–4463

    CAS  Google Scholar 

  7. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold Nanotriangles and potential application in infrared- absorbing optical coatings. Chem Mater 17(3):566–572

    CAS  Google Scholar 

  8. Pozrikidis, B. C., & Universiry, O. (1997). Introduction to theoretical and computational fluid dynamics

  9. Rodriguez, A., Chaturvedi, S., Kuhn, M., & Hrbek, J. (1998). Reaction of H 2 S and S 2 with Metal / Oxide Surfaces : Band-Gap Size and Chemical Reactivity 9(98), 5511–5519

  10. Extraction, H. A. S., Liu, Q., Shi, J., Sun, J., Wang, T., Zeng, L., & Jiang, G. (2011). Graphene and graphene oxide sheets supported on silica as versatile Zuschriften. (DCC), 6035–6039

  11. Fernández-garcia, M., & Rodriguez, J. A. (2007) Metal oxide nanoparticles. (October)

  12. Ali A, Hira Zafar MZ, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brosha, E. L., Mukundan, R., Brown, D. R., Garzon, F. H., Visser, J. H., Zanini, M., … Logothetis, E. M. (2000). Metal Oxides. (x), 171–182

  14. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558.

    Google Scholar 

  15. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):–710

  16. Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937

    CAS  Google Scholar 

  17. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289(1):125–131

    CAS  PubMed  Google Scholar 

  19. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11(2):313–327

    CAS  PubMed  Google Scholar 

  20. Gangwar RK, Tomar GB, Dhumale VA, Zinjarde S, Sharma RB, Datar S (2013) Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J Agric Food Chem 61(40):9632–9637

    CAS  PubMed  Google Scholar 

  21. Sabatini CA, Gehlen MH (2014) Enzymatic hydrolysis of quinizarin diester by lipase in silica nanoparticles investigated by fluorescence microscopy. J Nanopart Res 16(6):2093

    Google Scholar 

  22. Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    CAS  Google Scholar 

  23. Narayan R, Nayak U, Raichur A, Garg S (2018) Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 10(3):118

    CAS  PubMed Central  Google Scholar 

  24. Riikonen J, Xu W, Lehto VP (2018) Mesoporous systems for poorly soluble drugs–recent trends. Int J Pharm 536(1):178–186

    CAS  PubMed  Google Scholar 

  25. Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M (2017) Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release 262:329–347

    CAS  PubMed  Google Scholar 

  26. Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev 65(5):689–702

    CAS  PubMed  Google Scholar 

  27. Tao Z (2014) Mesoporous silica-based nanodevices for biological applications. RSC Adv 4(36):18961–18980

    CAS  Google Scholar 

  28. Kumari B, Singh DP (2016) A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105

    Google Scholar 

  29. Tan, T. T. Y., Liu, S., Zhang, Y., Han, M. Y., & Selvan, S. T. (2011). Microemulsion preparative methods (overview)

  30. Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5(1):36–45

    CAS  PubMed  Google Scholar 

  31. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Silva GA (2004) Introduction to nanotechnology and its applications to medicine. Surg Neurol 61(3):216–220

    PubMed  Google Scholar 

  33. Klabunde, K. J., & Richards, R. M. (Eds.). (2009). Nanoscale materials in chemistry. John Wiley & Sons.

  34. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S et al (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100(30):12142–12153

    CAS  Google Scholar 

  35. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    CAS  Google Scholar 

  36. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Google Scholar 

  37. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    CAS  Google Scholar 

  38. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    CAS  Google Scholar 

  39. Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403(6767):289–292

    CAS  PubMed  Google Scholar 

  40. Shah M et al (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohd, N. K., Wee, N. N. A. N., & Azmi, A. A. (2017). Green synthesis of silica nanoparticles using sugarcane bagasse. In AIP conference proceedings (Vol. 1885, No. 1, p. 020123) AIP Publishing

  42. Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, Jung H (2016) Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram Int 42(4):4875–4885

    CAS  Google Scholar 

  43. Agus PWE, Arzanto AW, Maulana KD, Hardyanti IS, Dyan Septyaningsih H, Widiarti N (2017) Preparation and Characterization of Silica Nanoparticles from Rice Straw Ash and its Application as Fertilizer. J Chem Pharm Res 9(10):193–199

    Google Scholar 

  44. Zulfiqar U, Subhani T, Husain SW (2016) Synthesis and characterization of silica nanoparticles from clay. J Asian Ceram 4(1):91–96

  45. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7

    Google Scholar 

  46. Shen J, Liu X, Zhu S, Zhang H, Tan J (2011) Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater Lett 65(8):1179–1183

    CAS  Google Scholar 

  47. Wang W, Martin JC, Zhang N, Ma C, Han A, Sun L (2011) Harvesting silica nanoparticles from rice husks. J Nanopart Res 13(12):6981–6990

    CAS  Google Scholar 

  48. Chandrasekhar S, Pramada PN, Praveen L (2005) Effect of organic acid treatment on the properties of rice husk silica. J Mater Sci 40(24):6535–6544

    CAS  Google Scholar 

  49. Umeda J, Kondoh K, Michiura Y (2007) Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. Mater Trans 48(12):3095–3100

    CAS  Google Scholar 

  50. Yalcin N, Sevinc V (2001) Studies on silica obtained from rice husk. Ceram Int 27(2):219–224

    CAS  Google Scholar 

  51. Ahmed AE, Adam F (2007) Indium incorporated silica from rice husk and its catalytic activity. Microporous Mesoporous Mater 103(1–3):284–295

    CAS  Google Scholar 

  52. Farook ADAM, Thiam-Seng CHEW, Andas J (2012) Liquid phase oxidation of acetophenone over rice husk silica vanadium catalyst. Chin J Catal 33(2–3):518–522

    Google Scholar 

  53. Grisdanurak N, Chiarakorn S, Wittayakun J (2003) Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to chlorinated volatile organic compounds (CVOCs) adsorption. Korean J Chem Eng 20(5):950–955

    CAS  Google Scholar 

  54. Weining W, Jarett CM, Xiotian F, Aijie H, Zhiping L, Luyi S (2012) Silica nanoparticles and framewoks from rice husk biomass. Appl Mater Interfaces 4:977–981

    Google Scholar 

  55. Haoran C, Weixing W, Jarett CM, Adam JO, Paige AD, Jeffery FX et al (2013) Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husk: a comprehensive utilization of rice husk biomass. ACS Sustain Chem Eng:254–259

  56. Van HL, Chi NHT, Hey HT (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method. Springer: Nanoscale Research Letters 8:58

    Google Scholar 

  57. Nalan OS, Canan K, Yasin T, Oncay Y, Bulend O, Turgay T (2014) Novel onstep synthesis of silica nanoparticles from sugar beet bagasse by laser ablation and their effects on the growth of fresh water algae culture. Particulogy. 17:729–735. https://doi.org/10.1016/j.partic.2013.11.003.

    Article  CAS  Google Scholar 

  58. Zhai SR, He CS, Wu D, Sun YH (2007) Hydrothermal synthesis of mesostructured aluminosilicate nanoparticles assisted by binary surfactants and finely controlled assembly process. J Non-Cryst Solids 353(16–17):1606–1611

    CAS  Google Scholar 

  59. Zhao W, Gu J, Zhang L, Chen H, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127(25):8916–8917

    CAS  PubMed  Google Scholar 

  60. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K et al (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689

    CAS  PubMed  Google Scholar 

  61. Mori K, Kondo Y, Morimoto S, Yamashita H (2008) Synthesis and multifunctional properties of superparamagnetic Iron oxide nanoparticles coated with mesoporous silica involving single-site Ti− oxide moiety. J Phys Chem C 112(2):397–404

    CAS  Google Scholar 

  62. Radu DR, Lai CY, Wiench JW, Pruski M, Lin VSY (2004) Gatekeeping layer effect: A poly (lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters. J Am Chem Soc 126(6):1640–1641

    CAS  PubMed  Google Scholar 

  63. Huang Y, Trewyn BG, Chen HT, Lin VSY (2008) One-pot reaction cascades catalyzed by base-and acid-functionalized mesoporous silica nanoparticles. New J Chem 32(8):1311–1313

    CAS  Google Scholar 

  64. Mal NK, Fujiwara M, Tanaka Y (2003) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421(6921):350–353

    CAS  PubMed  Google Scholar 

  65. Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ (2012) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 7:4053

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Agnihotri S, Pathak R, Jha D, Roy I, Gautam HK, Sharma AK, Kumar P (2015) Synthesis and antimicrobial activity of aminoglycoside-conjugated silica nanoparticles against clinical and resistant bacteria. New J Chem 39(9):6746–6755

    CAS  Google Scholar 

  67. Aughenbaugh W, Radin S, Ducheyne P (2001) Silica sol-gel for the controlled release of antibiotics. II The effect of synthesis parameters on the in vitro release kinetics of vancomycin. J Biomed Mater Res B Part A 57(3):321–326

    CAS  Google Scholar 

  68. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133

    PubMed  PubMed Central  Google Scholar 

  69. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and Photothermal therapy. Small 13(2)

  70. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S (2012) Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm 9(3):505–513

    CAS  PubMed  Google Scholar 

  71. Lien, Y. H., & Wu, T. M. (2008). The application of thermosensitive magnetic nanoparticles in drug delivery. In advanced materials research (Vol. 47, pp. 528-531). Trans Tech Publications

  72. Brozek EM, Mollard AH, Zharov I (2014) Silica nanoparticles carrying boron-containing polymer brushes. J Nanopart Res 16(5):2407

    Google Scholar 

  73. Hanif H, Nazir S, Mazhar K, Waseem M, Bano S, Rashid U (2017) Targeted delivery of mesoporous silica nanoparticles loaded monastrol into cancer cells: an in vitro study. Appl Nanosci 7(8):549–555

    CAS  Google Scholar 

  74. Zheng Y, Fahrenholtz CD, Hackett CL, Ding S, Day CS, Dhall R, Marrs GS, Gross MD, Singh R, Bierbach U (2017) Large-pore functionalized mesoporous silica nanoparticles as drug delivery vector for a highly cytotoxic hybrid platinum–Acridine anticancer agent. Chem Eur J 23(14):3386–3397

    CAS  PubMed  Google Scholar 

  75. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR, Wiesner U, Nikitin AY (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12(6):064007–064007

    PubMed  Google Scholar 

  77. Shin K, Choi JW, Ko G, Baik S, Kim D, Park OK et al (2017) Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nat Commun 8:15807

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang X, Liu X, Li Y, Huang Q, He W, Zhang R, Feng Q and Benayahu D (2017). The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells. Mater Sci Eng R rep.: C, 81, pp.341-348

  79. Kobayashi Y, Matsudo H, Li TT, Shibuya K, Kubota Y, Oikawa T et al (2016) Fabrication of quantum dot/silica core–shell particles immobilizing au nanoparticles and their dual imaging functions. Appl Nanosci 6(3):301–307

    CAS  Google Scholar 

  80. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    CAS  PubMed  Google Scholar 

  81. Bouchoucha M, van Heeswijk RB, Gossuin Y, Kleitz F, Fortin MA (2017) Fluorinated mesoporous silica nanoparticles for binuclear probes in 1H and 19F magnetic resonance imaging. Langmuir 33(40):10531–10542

    CAS  PubMed  Google Scholar 

  82. Perrier M, Gary-Bobo M, Lartigue L, Brevet D, Morère A, Garcia M, Durand JO (2013) Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells. J Nanopart Res 15(5):1602

    Google Scholar 

  83. Wang L, Zhao W, Tan W (2008) Bioconjugated silica nanoparticles: development and applications. Nano Res 1(2):99–115

    CAS  Google Scholar 

  84. Ab Wab HA, Razak KA, Zakaria ND (2014) Properties of amorphous silica nanoparticles colloid drug delivery system synthesized using the micelle formation method. J Nanopart Res 16(2):2256

    Google Scholar 

  85. Ge H, Zhang J, Yuan Y, Liu J, Liu R, Liu X (2017) Preparation of organic–inorganic hybrid silica nanoparticles with contact antibacterial properties and their application in UV-curable coatings. Prog Org Coat 106:20–26

    CAS  Google Scholar 

  86. Kwon EJ, Skalak M, Bertucci A, Braun G, Ricci F, Ruoslahti E et al (2017) Porous silicon nanoparticle delivery of tandem peptide anti-Infectives for the treatment of Pseudomonas aeruginosa lung infections. Adv Mater 29(35):1701527

    Google Scholar 

  87. Valetti S, Xia X, Costa-Gouveia J, Brodin P, Bernet-Camard MF, Andersson M, Feiler A (2017) Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant mycobacterium tuberculosis infections. Nanomedicine 12(8):831–844

    CAS  PubMed  Google Scholar 

  88. Mosselhy DA, Ge Y, Gasik M, Nordström K, Natri O, Hannula SP (2016) Silica-gentamicin Nanohybrids: synthesis and antimicrobial action. Materials 9(3):170

    PubMed Central  Google Scholar 

  89. Camporotondi, D. E., Foglia, M. L., Alvarez, G. S., Mebert, A. M., Diaz, L. E., Coradin, T., & Desimone, M. F. (2013). Antimicrobial properties of silica modified nanoparticles. Microbial pathogens and strategies for combating them: science, technology and education; microbiology book series, (4), 283-290

  90. Van Emden, H. F., Ball, S. L., & Rao, M. R. (1988). Pest, disease and weed problems in pea, lentil, faba bean and chickpea. In world crops: cool season food legumes (pp. 519–534) Springer, Dordrecht

  91. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    CAS  PubMed  Google Scholar 

  92. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14(12):1294

    Google Scholar 

  93. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO 2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21(1):13–17

    CAS  PubMed  Google Scholar 

  94. Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks 4(3)

  95. Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22(1):155–160

    CAS  Google Scholar 

  96. Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62

    CAS  PubMed  Google Scholar 

  97. Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083

    PubMed  Google Scholar 

  98. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105

    Google Scholar 

  99. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256

    CAS  Google Scholar 

  100. Magda S, Hussein MM (2016) Determinations of the effect of using silca gel and nano-silica gel against Tuta absoluta (Lepidoptera: Gelechiidae) in tomato fields. J Chem Pharm Res 8(4):506–512

    CAS  Google Scholar 

  101. Rouhani, M., Samih, M. A., & Kalantari, S. (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F.(Col.: Bruchidae)

  102. Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    CAS  Google Scholar 

  103. Wen LX, Li ZZ, Zou HK, Liu AQ, Chen JF (2005) Controlled release of avermectin from porous hollow silica nanoparticles. Pest Management Science: formerly Pesticide Science 61(6):583–590

    CAS  Google Scholar 

  104. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91(1):11–17

    CAS  PubMed  Google Scholar 

  105. Keddie BA, Aponte GW, Volkman LE (1989) The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 243(4899):1728–1730. https://doi.org/10.1126/science.2648574

  106. Rouhani M, Samih MA, Kalantari S (2008) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4(4):297–305

  107. Magda S, Hussein MM (2016) Determinations of the effect of using silica gel and nano-silica gel against Tutaabsoluta (Lepidoptera: Gelechiidae) in tomato fields. J Chem Pharm Res 8(4):506–512

    CAS  Google Scholar 

  108. El-Bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. App Sci Report 4(3):241–246

    Google Scholar 

  109. Arumugam G, Velayutham V, Shanmugavel S, Sundaram J (2016) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 6(3):445–450

    CAS  Google Scholar 

  110. Popat A, Liu J, Hu Q, Kennedy M, Peters B, Lu GQM, Qiao SZ (2012) Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 4(3):970–975

    CAS  PubMed  Google Scholar 

  111. Song H, Yuan W, Jin P, Wang W, Wang X, Yang L, Zhang Y (2016) Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biol Technol 119:41–48

    CAS  Google Scholar 

  112. Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. Eur Polym J 43(9):3757–3765

    CAS  Google Scholar 

  113. De Azeredo HM (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253

    Google Scholar 

  114. Sofla SJD, James LA, Zhang Y (2018) Insight into the stability of hydrophilic silica nanoparticles in seawater for enhanced oil recovery implications. Fuel 216:559–571

    Google Scholar 

  115. Fakoya MF, Shah SN (2017) Emergence of nanotechnology in the oil and gas industry: emphasis on the application of silica nanoparticles. Petroleum 3(4):391–405

    Google Scholar 

  116. Patel AC, Li S, Yuan JM, Wei Y (2006) In situ encapsulation of horseradish peroxidase in electro spun porous silica fibers for potential biosensor applications. Nano Lett 6(5):1042–1046

    CAS  PubMed  Google Scholar 

  117. Yamauchi T, Saitoh T, Shirai K, Fujiki K, Tsubokawa N (2010) Immobilization of capsaicin onto silica nanoparticle surface and stimulus properties of the capsaicin-immobilized silica. J Polym Sci A Polym Chem 48(8):1800–1805

    CAS  Google Scholar 

  118. Long Z, Xu W, Lu Y, Qiu H (2016) Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages. J Chromatogr B 1029:230–238

    Google Scholar 

  119. Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40(18):5083–5086

    CAS  Google Scholar 

  120. Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257(13):5720–5725

    CAS  Google Scholar 

  121. Behzadi A, Mohammadi A (2016) Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery. J Nanopart Res 18(9):266

    Google Scholar 

  122. Kim I, Worthen AJ, Johnston KP, DiCarlo DA. & Huh C (2016). Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. J. Nanoparticle res, 18(4), 82

  123. Bourbon AI, Pinheiro AC, Cerqueira MA, Rocha CM, Avides MC, Quintas MA, Vicente AA (2011) Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J Food Eng 106(2):111–118

    CAS  Google Scholar 

  124. Shi S, Wang W, Liu L, Wu S, Wei Y, Li W (2013) Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng 118(1):125–131

    CAS  Google Scholar 

  125. Youssif MI, El-Maghraby RM, Saleh SM, Elgibaly A (2018) Silica nanofluid flooding for enhanced oil recovery in sandstone rocks. Egypt J Pet 27(1):105–110

    Google Scholar 

  126. Rognmo AU, Heldal S, Fernø MA (2018) Silica nanoparticles to stabilize CO2-foam for improved CO2utilization: enhanced CO2storage and oil recovery from mature oil reservoirs. Fuel 216(November 2017):621–626

    CAS  Google Scholar 

  127. Yousefvand H, Jafari A (2015) Enhanced oil recovery using polymer/nanosilica. Procedia Mater Sci 11(2010):565–570. https://doi.org/10.1016/j.mspro.2015.11.068

  128. Khan I, Farhan M, Singh P, Thiagarajan P (2014) Nanotechnology for environmental remediation. Res J Pharm, Biol Chem Sci 5(3):1916–1927

    Google Scholar 

  129. Yang X, Shen Z, Zhang B, Yang J, Hong WX, Zhuang Z, Liu J (2013) Silica nanoparticles capture atmospheric lead: implications in the treatment of environmental heavy metal pollution. Chemosphere 90(2):653–656

    CAS  PubMed  Google Scholar 

  130. He C, Ren L, Zhu W, Xu Y, Qian X (2015) Removal of mercury from aqueous solution using mesoporous silica nanoparticles modified with polyamide receptor. J Colloid Interface Sci 458:229–234

    CAS  PubMed  Google Scholar 

  131. Albertini F, Ribeiro T, Alves S, Baleizão C, Farinha JPS (2018) Boron-chelating membranes based in hybrid mesoporous silica nanoparticles for water purification. Mater Des 141:407–413

    CAS  Google Scholar 

  132. Mattos BD, Rojas OJ, Magalhães WLE (2017) Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J Clean Prod 142:4206–4213

    CAS  Google Scholar 

  133. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23(14):13754–13788

    CAS  Google Scholar 

  134. Sonn JS, Lee JY, Jo SH, Yoon IH, Jung CH, Lim JC (2018) Effect of surface modification of silica nanoparticles by silane coupling agent on decontamination foam stability. Ann Nucl Energy 114:11–18

    CAS  Google Scholar 

  135. Sibag M, Choi BG, Suh C, Lee KH, Lee JW, Maeng SK, Cho J (2015) Inhibition of total oxygen uptake by silica nanoparticles in activated sludge. J Hazard Mater 283:841–846

    CAS  PubMed  Google Scholar 

  136. Park S, Ko YS, Jung H, Lee C, Woo K, Ko G (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485

    CAS  PubMed  Google Scholar 

  137. Cho YK, Park EJ, Kim YD (2014) Removal of oil by gelation using hydrophobic silica nanoparticles. J Ind Eng Chem 20(4):1231–1235

    CAS  Google Scholar 

  138. Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NHN, Jusoh R et al (2012) Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J Colloid Interface Sci 386(1):307–314

    CAS  PubMed  Google Scholar 

  139. Mahmoud MA, Poncheri A, Badr Y, Abd El Waned MG (2009) Photocatalytic degradation of methyl red dye. S Afr J Sci 105(7–8):299–303

    CAS  Google Scholar 

  140. Dhmees AS, Khaleel NM, Mahmoud SA (2018) Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal. Egypt J Pet 27(4):1113–1121

    Google Scholar 

  141. Das SK, Khan MMR, Parandhaman T, Laffir F, Guha AK, Sekaran G, Mandal AB (2013) Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 5(12):5549–5560

Download references

Acknowledgments

The author is thankful to Vit University and mentor Dr. C.Ramalingam for giving valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ramalingam.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peerzada Gh Jeelani as first Author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeelani, P.G., Mulay, P., Venkat, R. et al. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 12, 1337–1354 (2020). https://doi.org/10.1007/s12633-019-00229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00229-y

Keywords

Navigation