Skip to main content

Advertisement

Log in

Evaluation of the Topographical Surface Changes of Silicon Wafers after Annealing and Plasma Cleaning

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

The morphological stability of silicon single crystal wafers was investigated, after performing cleaning surface treatments based on moderate temperature annealing and plasma sputtering.

Methods

The wafer surfaces were measured by Tapping mode atomic force microscopy in air, before and after the different treatments. The 3D images were segmented by watershed algorithm identifying the local peaks, and the stereometric parameters were extracted thereof. The analysis of variance allowed to better assess the statistically significant differences.

Results

All the resulting quantities were critically discussed. It appeared that the different cleaning treatments affected differently the surface morphology changes occurring between pristine and treated surfaces, making them distinguishable in these terms.

Conclusions

The presented combination of measurement technique and analyzing protocol potentially allows one to assess the structural differences of the surfaces of interest, when assumptions are made about the physical origin of the emerging topographical features. In the present case, if no etching is assumed, it appears that all cleaning protocols actually worsen the surface quality. The effect of these morphological differences on the functional properties of the surface should be ascertained independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sestak J, Simon P (2013) Thermal analysis of micro, Nano- and Non-Crystalline Materials. Springer Netherlands

  2. Ţălu Ş (2015) Micro and nanoscale characterization of three dimensional surfaces. Basics and applications. Napoca Star Publishing House, Cluj-Napoca

  3. Sengupta A, Sarkar CK (2016) Introduction to nano: basics to nanoscience and nanotechnology. Springer

  4. Shikhgasan R, Dinara S, Sebastian S, Guseyn R (2015) Epitaxy of silicon carbide on silicon : micromorphological analysis of growth surface evolution. Superlattice Microst 86:395–402. https://doi.org/10.1016/j.spmi.2015.08.007

    Article  CAS  Google Scholar 

  5. Purohit K, Khitoliya P, Purohit R (2012) Recent advances in nanotechnology: an overview. Int J Sci Eng Res 3:449–456. https://doi.org/10.1007/978-94-011-4327-1_30

    Article  Google Scholar 

  6. Naseri N, Solaymani S, Ghaderi A et al (2017) Microstructure, morphology and electrochemical properties of co nanoflake water oxidation electrocatalyst at micro- and nanoscale. RSC Adv 7:12923–12930. https://doi.org/10.1039/c6ra28795f

    Article  CAS  Google Scholar 

  7. Ţălu Ş, Bramowicz M, Kulesza S, et al (2016) Gold nanoparticles embedded in carbon film : micromorphology analysis. J Ind Eng Chem 158–166

  8. Stach S, Dallaeva D, Ţălu Ş et al (2015) Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater Sci 33:175–184. https://doi.org/10.1515/msp-2015-0036

    Article  CAS  Google Scholar 

  9. Méndez A, Reyes Y, Trejo G et al (2015) Micromorphological characterization of zinc/silver particle composite coatings. Microsc Res Tech 78:1082–1089. https://doi.org/10.1002/jemt.22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patra N, Salerno M, Malerba M et al (2011) Improvement of thermal stability of poly(methyl methacrylate) by incorporation of colloidal TiO2 nanorods. Polym Degrad Stab 96:1377–1381. https://doi.org/10.1016/j.polymdegradstab.2011.03.020

    Article  CAS  Google Scholar 

  11. Elenkova D, Zaharieva J, Getsova M et al (2015) Morphology and optical properties of SiO2-based composite thin films with immobilized terbium(III) complex with a Biscoumarin derivative. Int J Polym Anal Charact 20:42–56. https://doi.org/10.1080/1023666X.2014.955400

    Article  CAS  Google Scholar 

  12. Dallaeva D, Ţălu Ş, Stach S et al (2014) AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl Surf Sci 312:81–86. https://doi.org/10.1016/j.apsusc.2014.05.086

    Article  CAS  Google Scholar 

  13. Ţălu Ş, Stach S, Valedbagi S et al (2015) Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputtering. Mater Sci 33:137–143. https://doi.org/10.1515/msp-2015-0010

    Article  CAS  Google Scholar 

  14. Arman A, Ţălu Ş, Luna C et al (2015) Micromorphology characterization of copper thin films by AFM and fractal analysis. J Mater Sci Mater Electron 26:9630–9639. https://doi.org/10.1007/s10854-015-3628-5

    Article  CAS  Google Scholar 

  15. Ţălu Ş, Stach S, Zaharieva J et al (2014) Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) β-Diketonates by fractal analysis. Int J Polym Anal Charact 19:404–421. https://doi.org/10.1080/1023666X.2014.904149

    Article  CAS  Google Scholar 

  16. Salerno M, Gigli G, Zavelani-Rossi M et al (2007) Effects of morphology and optical contrast in organic distributed feedback lasers. Appl Phys Lett 90(111110):1–3. https://doi.org/10.1063/1.2713762

    Article  CAS  Google Scholar 

  17. Salerno M, Patra N, Thorat S et al (2012) Combined effect of polishing on surface morphology and elastic properties of a commercial dental restorative resin composite. Sci Adv Mater 4:126–134. https://doi.org/10.1166/sam.2012.1261

    Article  CAS  Google Scholar 

  18. Das G, Patra N, Gopalakrishanan A et al (2012) Surface enhanced Raman scattering substrate based on gold-coated anodic porous alumina template. Microelectron Eng 97:383–386. https://doi.org/10.1016/j.mee.2012.02.037

    Article  CAS  Google Scholar 

  19. Tilli M (2015) Silicon wafers : preparation and properties. In: handbook of silicon based MEMS materials and technologies. Micro and Nano Technologies, 2nd ed. pp 86–103

  20. Teichert C, Mackay JF, Savage DE et al (1995) Comparison of surface roughness of polished silicon wafers measured by light scattering topography , softxray scattering , and atomicforce microscopy Comparison of surface roughness of polished silicon wafers measured. Appl Phys Lett 2346:126–129. https://doi.org/10.1063/1.113978

    Article  Google Scholar 

  21. Koshimizu S (2005) Measurement of surface roughness and thickness of silicon wafers using an infrared laser. Key Eng Mater 292:377–380. https://doi.org/10.4028/www.scientific.net/KEM.291-292.377

    Article  Google Scholar 

  22. Wang H, Song Z, Liu W, Kong H (2011) Microelectronic engineering effect of hydrogen peroxide concentration on surface micro- roughness of silicon wafer after final polishing. Microelectron Eng 88:1010–1015. https://doi.org/10.1016/j.mee.2011.01.067

    Article  CAS  Google Scholar 

  23. Mc Lellan N, Fan N, Liu S et al (2016) Effects of Wafer Thinning Condition on the Roughness , Morphology and Fracture Strength. J Electron Packag 126:110–114. https://doi.org/10.1115/1.1647123

    Article  CAS  Google Scholar 

  24. Medvid A, Dmitruk I, Onufrijevs P et al (2006) Control of surface roughness of Si and Ge single crystal by laser radiation. J Laser Micro/Nanoengineering 1:3–6. https://doi.org/10.2961/jlmn.2006.03.0004

    Article  Google Scholar 

  25. Miki N, Spearing SM (2010) Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers Appl Phys Lett 6800: . doi: https://doi.org/10.1063/1.1621086

  26. Mohammadi H, Poyraz HB (2015) Surface finish improvement of an unpolished silicon wafer using micro-laser assisted machining. Int J Abras Technol 7:107–121

    Article  Google Scholar 

  27. Li S, Wan B, Landers RG (2014) Surface roughness optimization in processing SiC monocrystal wafers by wire saw machining with ultrasonic vibration. Proc Inst Mech Eng , Part B J Eng Manuf Ultrason Vib. doi: https://doi.org/10.1177/0954405413508116

  28. Stach S, Sapota W, Ţălu Ş et al (2016) 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J Mater Sci Mater Electron 28:2113–2122. https://doi.org/10.1007/s10854-016-5774-9

    Article  CAS  Google Scholar 

  29. Stach S, Solaymani S, Ghaderi A (2015) Stereometric parameters of the Cu/Fe NPs thin films. J Phys Chem C 119:17887–17898. https://doi.org/10.1021/acs.jpcc.5b04676

    Article  CAS  Google Scholar 

  30. Salerno M, Giacomelli L, Derchi G et al (2010) Atomic force microscopy in vitro study of surface roughness and fractal character of a dental restoration composite after air-polishing. Biomed Eng Online 9:59

    Article  Google Scholar 

  31. Ţălu S, Bramowicz M, Kulesza S et al (2016) Fractal features and surface micromorphology of diamond nanocrystals. J Microsc 00:1–10. https://doi.org/10.1111/jmi.12422

    Article  CAS  Google Scholar 

  32. Yadav RP, Kumar M, Mittal AK, Pandey AC (2015) Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF 2 thin film surfaces. Chaos 083115: . doi: https://doi.org/10.1063/1.4928695

  33. Solaymani S, Bramowicz M, Kulesza S et al (2016) Effect of electric field direction and substrate roughness on three- dimensional self-assembly growth of copper oxide nanowires. J Mater Sci Mater Electron 27:9272–9277. https://doi.org/10.1007/s10854-016-4965-8

    Article  CAS  Google Scholar 

  34. Stach S, Alia M (2014) Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings. J Electrochem Soc 161:44–47. https://doi.org/10.1149/2.039401jes

    Article  CAS  Google Scholar 

  35. Ţălu Ş, Stach S, Mahajan A et al (2014) Multifractal analysis of drop-casted copper (II) tetrasulfophthalocyanine fi lm surfaces on the indium tin oxide substrates. Surf Interface Anal 46:393–398. https://doi.org/10.1002/sia.5492

    Article  CAS  Google Scholar 

  36. Ţălu Ş, Bramowicz M, Kulesza S et al (2017) Surface morphology analysis of composite thin films based on titanium-dioxide nanoparticles. Acta Phys Pol A 131:1529–1533. https://doi.org/10.12693/APhysPolA.131.1529

    Article  Google Scholar 

  37. Aguilar JF (2005) Confocal profiling of grooves and ridges with circular section using the divided aperture technique. Rev Mex Fis 51:420–425

    Google Scholar 

  38. Mignot C (2018) Color (and 3D) for scanning Electron microscopy. Micros Today 26:12–17. https://doi.org/10.1017/s1551929518000482

    Article  CAS  Google Scholar 

  39. Sobola D, Ţalu Ş, Solaymani S, Grmela L (2017) Influence of scanning rate on quality of AFM image : study of surface statistical metrics. Microsc Res Tech 80:1328–1336. https://doi.org/10.1002/jemt.22945

    Article  PubMed  Google Scholar 

  40. Reyes-Vidal Y, Suarez-Rojas R, Ruiza C et al (2015) Applied Surface Science Electrodeposition , characterization , and antibacterial activity of zinc / silver particle composite coatings. Appl Surf Sci 342:34–41. https://doi.org/10.1016/j.apsusc.2015.03.037

    Article  CAS  Google Scholar 

  41. Ţălu Ş, Ghazai AJ, Stach S et al (2013) Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis. J Mater Sci Mater Electron 25:466–477. https://doi.org/10.1007/s10854-013-1611-6

    Article  CAS  Google Scholar 

  42. Digital Surf Mountains Map® 7

Download references

Acknowledgements

The research was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601), Internal Grant Agency of Brno University of Technology, grant No. FEKT-S-17-4626. A part of the work was carried out with the support of CEITEC Nano Research Infrastructure (ID LM2015041, MEYS CR, 2016–2019), CEITEC Brno University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Salerno.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 7420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stach, S., Ţălu, Ş., Dallaev, R. et al. Evaluation of the Topographical Surface Changes of Silicon Wafers after Annealing and Plasma Cleaning. Silicon 12, 2563–2570 (2020). https://doi.org/10.1007/s12633-019-00351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00351-x

Keywords

Navigation