Skip to main content
Log in

Modification of Silica Nanoparticles with Cysteine or Methionine Amino Acids for the Removal of Uranium (VI) from Aqueous Solution

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silica nanoparticles (SiO2-NPs), modified silica nanoparticles with cysteine (SiO2-Cys) or methionine (SiO2-Meth) were used for sorption of uranium (VI) ion from aqueous solution. Silica nanoparticles and its modified forms were prepared and characterized by elemental analysis, FTIR, XRD, XRF, TGA, DSC, SEM, TEM, BET and zeta potential. Sorption of uranium(VI) ion using batch technique by silica nanoparticles, SiO2-Cys and SiO2-Meth was studied as a function of initial concentration, sorbent dosage, pH, contact time and temperature. The percent uptakes for silica nanoparticles, SiO2-Cys, SiO2-Meth were 27%, 33%, 30% respectively for U(VI) ion at 25 °C. The kinetic studies show that sorption of U(VI) ion by silica nanoparticles, SiO2-Cys and SiO2-Meth was well described by the pseudo second order equation. Negative values of Gibbs free energy (ΔG°) suggest the spontaneity of the sorption process on silica nanoparticles and its modified forms (SiO2-Cys) and (SiO2-Meth). Positive values of enthalpy (ΔH°) indicate endothermic adsorption process. The sorption isotherm was better fitted by Langmuir model with maximum sorption capacity for silica nanoparticles, SiO2-Cys and SiO2-Meth was found to be 3.6, 4.5, 3.8 mg/g respectively. Desorption studies indicate that the most favorable desorption reagent for uranium(VI) is 0.1 M HNO3 and the highest percent recovery was achieved from silica nanoparticles (~71%) than its modified forms SiO2-Cys and SiO2-Meth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali O, Osman H, Sayed S, Shalabi M (2015) The removal of uranium and thorium from their aqueous solutions via glauconite. Desalin Water Treat 53:760–767

    CAS  Google Scholar 

  2. Majdan M, Pikus S, Gajowiak A, Sternik D, Zieba E (2010) Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. J Hazard Mater 184:662–670

    CAS  PubMed  Google Scholar 

  3. Dolatyari H, Yaftian M, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    CAS  Google Scholar 

  4. Talip Z, Eral M, Hicsonmez U (2009) Sorption of thorium from aqueous solutions by perlite. J Environ Radioact 100:139–143

    CAS  PubMed  Google Scholar 

  5. Simsek S, Baybas D, Koçyigit MC, Yıldırım H (2014) Organoclay modified with lignin as a new adsorbent for removal of Pb2+ and UO22+. J Radioanal Nucl Chem 299:283–292

    CAS  Google Scholar 

  6. Guo Z, Yu X, Guo F, Tao Z (2005) Th(IV) sorption on alumina: effects of contact time, pH, ionic strength and phosphate. J Colloid Interface Sci 288:14–20

    CAS  PubMed  Google Scholar 

  7. Kutahyali C, Eral M (2004) Selective sorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40(2):109–114

    CAS  Google Scholar 

  8. Khalili F, Salameh N, Shaybe M (2013) Sorption of uranium(VI) and thorium(IV) by Jordanian Bentonite. J Chem:1–10

  9. Khalili F, Al-Shaybe M (2009) Sorption of thorium (IV) and uranium (VI) by Tulul al-Shabba Zeolitic Tuff, Jordan. J Earth Environ Sci 2:108–119

    Google Scholar 

  10. Sadeghi S, Azhdari H, Arabi H, Oghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216

    PubMed  Google Scholar 

  11. Crini G, Lichtfouse E, Wilson L, Crini N (2018) Green adsorbents for pollutant removal, Environmental chemistry for a sustainable world 18. Cham Springer, 23–71

  12. Barik TK, Sahu B, Swain V (2008) Silica nanoparticles-from medicine to pest control. Parasitol Res 103:253–258

    CAS  PubMed  Google Scholar 

  13. Subbiah R, Veerapandian M, Yun KS (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    CAS  PubMed  Google Scholar 

  14. Mathe C, Devineau S, Aude J, Lagniel G, Chedin C, Legros V, Mathon M (2013) Structural determinants for protein sorption/nonsorption to silica surface. PLoS One 8(11):81346

    Google Scholar 

  15. Townsend DM, Tew KD, Tapiero H (2004) Sulfur containing amino acids and human disease. Biomed Pharmacother 58(1):47–55

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Conte ML, Jakob U, Reichmann D (2013) Oxidative stress and redox regulation. Chapter one, Springer New York

  17. Lambert JF (2008) Sorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242

    CAS  PubMed  Google Scholar 

  18. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46:792–801

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Patwardhan SV, Emami FS, Berry RJ, Jones SE, Naik RR, Deschaume O, Heinz H, Perry CC (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide sorption. J Am Chem Soc 134:6244–6256

    CAS  PubMed  Google Scholar 

  21. Grzegorczyk DS, Carta G (1996) Sorption of amino acids on porous polymeric adsorbents—II. Intraparticle mass transfer. Chem Eng Sci 51(5):819–826

    CAS  Google Scholar 

  22. Ikahsan J, Johnson BB, Wells JD, Angove MJ (2004) Sorption of aspartic acid on kaolinite. J Colloid Interface Sci 273(1):1–5

    Google Scholar 

  23. Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Sorption of L-histidine over mesoporous carbon molecular sieves. Carbon 44:530

    CAS  Google Scholar 

  24. Krohn JE, Tsapatsis M (2005) Amino acid sorption on zeolite beta. Langmuir 21(9):8743–8750

    CAS  PubMed  Google Scholar 

  25. Faghihian H, Nejati-Yazdinejad M (2009) Equilibrium study of sorption of L-cysteine by natural bentonite. Clay Miner 44:125–133

    CAS  Google Scholar 

  26. Nam NS, Khang DN, Tuan LQ, Son LT (2016) Surface modification of silica nanoparticles by hexamethyldisilazane and n-butanol. Int J Env Tech Sci 2:31–37

    Google Scholar 

  27. Doi E, Shibata D, Matoba T (1981) Modified calorimetric ninhydrin methods for peptidase assay. Anal Biochem 118:173–184

    CAS  PubMed  Google Scholar 

  28. Orabi AH (2013) Determination of uranium after separation using solvent extraction from slightly nitric acid solution and spectrophotometric detection. J Radiat Res Appl Sci 6:1–10

    CAS  Google Scholar 

  29. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52

    CAS  PubMed  Google Scholar 

  30. Langmuir I (1918) The sorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Google Scholar 

  31. Freundlich H (1906) Over the sorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  32. Dubinin MM, Radushkevich LV (1947) Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt 1:875

    Google Scholar 

  33. Fan F, Pan D, Wu H, Zhang H, Wu W (2017) Succinamic acid grafted nano silica for the preconcentration of U(VI) from aqueous solution. Ind Eng Chem Res 56(8):2221–2228

    CAS  Google Scholar 

  34. Khataee A, Movafeghi A, Nazari F, Vafaei F, Dadpour M, Hanifehpour Y, Joo S (2014) The toxic effects of L-cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. J Nanopart Res 16:2774–2784

    Google Scholar 

  35. Parker SF (2013) Assignment of the vibrational spectrum of L-cysteine. Chem Phys 424:75–79

    CAS  Google Scholar 

  36. Wolpert M, Hellwig P (2006) Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm−1. Spectrochim Acta A 64:987–1001

    Google Scholar 

  37. Jafari V, Allahverdi A (2014) Synthesis and characterization of colloidal silica nanoparticles via an ultrasound assisted route based on alkali leaching of silica fume. Int J Nanosci Nanotechnol 10(3):145–152

    Google Scholar 

  38. Chen H, Bian H, Li J, Guo X, Wen X, Zheng J (2013) Molecular conformations of crystalline L-cysteine determined with vibrational cross angle measurements. J Phys Chem B 117:15614–15624

    CAS  PubMed  Google Scholar 

  39. Hautala J, Airaksinen S, Naukkarinen N, Vainio O, Juppo A (2014) Evaluation of new flavors for feline mini-tablet formulations. J Excip Food Chem 5(2):80–100

    Google Scholar 

  40. Sompech S, Dasri T, Thaomola S (2016) Preparation and characterization of amorphous silica and calcium oxide from agricultural wastes. Orient J Chem 32(4):1923–1928

    CAS  Google Scholar 

  41. Fuad A, Mufti N, Diantoro M, Septa KS (2016) Synthesis and characterization of highly purified silica nanoparticles from pyrophyllite ores. In: AIP conference proceedings, 1719, 030020-5

  42. Dakova I, Vasileva P, Karadjova I (2011) Cysteine modified silica submicrospheres as a new sorbent for preconcentration of Cd (II) and Pb (II). Bulg Chem Commun 43(2):210–216

    CAS  Google Scholar 

  43. Sing K, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure App Chem 57(4):603–619

    CAS  Google Scholar 

  44. Chaves M, Valsaraj K, DeLaune R, Gambrell R, Buchler P (2011) Mercury uptake by biogenic silica modified with L-cysteine. Environ Technol 32(14):1615–1625

    CAS  PubMed  Google Scholar 

  45. Khantana N, Shadjoua N, Hasanzadeh M (2019) Synthesize of dendritic fibrous nano-silica functionalized by cysteine and its application as advanced adsorbent. Nanocomposites 5(4):104–113

    Google Scholar 

  46. Kim K, Kim H, Lee W, Lee C, Kim T, Lee J, Jeong J, Paek S, Oh J (2014) Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica. Int J Nanomedicine 9:29–40

    PubMed  PubMed Central  Google Scholar 

  47. Du M, Zheng Y (2007) Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym Compos 28(2):198–207

    CAS  Google Scholar 

  48. Wu J, Ma G, Li P, Ling L, Wang B (2014) Surface modification of silica nanoparticles with acrylsilane-containing tertiary amine structure and their effect on the properties of UV-curable coating. J Coat Technol Res 11(3):387–395

    CAS  Google Scholar 

  49. Weiss IM, Muth C, Drumm R, Kirchner H (2018) Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys 11(1):1–15

    Google Scholar 

  50. Belachew N, Devi R, Basavaiah K (2016) Facile green synthesis of L-methionine capped magnetite nanoparticles for sorption of pollutant Rhodamine B. J Mol Liq 224:713–720

    CAS  Google Scholar 

  51. Wang R, Wei Y, Jiang H, Gong H (2018) Sorption of uranium(VI) on mesoporous silica microspheres supported titanium hydroxide hybrid material. J Radioanal Nucl Chem 318(3):2023–2032

    CAS  Google Scholar 

  52. Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Wang X (2008) Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J Hazard Mater 160(2–3):655–661

    CAS  PubMed  Google Scholar 

  53. Huang Y, Hu Y, Chen L, Yang T, Huang H, Shi R, Lu P, Zhong C (2018) Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf. PLoS One 13(3):0193659

    Google Scholar 

  54. Naseem Z, Bhatti H, Sadaf S, Noreen S, Ilyas S (2016) Sorption of uranium (VI) by Trapa bispinosa from aqueous solution, effect of pretreatments and modeling studies. Desalin Water Treat 57(24):11121–11132

    CAS  Google Scholar 

  55. Ebrahimi-Gatkash M, Younesi HN, Heidari A (2015) Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column sorption of the nitrate anion. Appl Water Sci 7(4):1887–1901

    Google Scholar 

  56. Kaynar UH, Ayvacıklı M, Hiçsönmez U, Kaynar SC (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151

    CAS  PubMed  Google Scholar 

  57. Chegrouche S, Mellah A, Barkat M, Aknoun A (2016) Kinetics and isotherms for uranium (VI) sorption from aqueous solutions by goethite. Am J Chem Mater Sci 3(2):6–12

    Google Scholar 

  58. Donat R, Akdogan A, Erdem E, Cetisli H (2005) Thermodynamics of Pb2+ and Ni2+ sorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286(1):43–52

    CAS  PubMed  Google Scholar 

  59. Xia L, Tan K, Wang X, Zheng W, Liu W, Deng C (2013) Uranium removal from aqueous solution by banyan leaves: equilibrium, thermodynamic, kinetic, and mechanism studies. J Environ Eng 139:887–895

    CAS  Google Scholar 

  60. Khalili F, Al-Banna G (2015) Sorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil – Jordan. J Environ Radioact 146:16–26

    CAS  PubMed  Google Scholar 

  61. Liu C, Liang X, Liu J, Yuan W (2016) Desorption of copper ions from the polyamine functionalized adsorbents: behaviors and mechanisms. Sorpt Sci Technol 34(7–8):455–468

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Ismail.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, L., Khalili, F. & Abu Orabi, F.M. Modification of Silica Nanoparticles with Cysteine or Methionine Amino Acids for the Removal of Uranium (VI) from Aqueous Solution. Silicon 12, 2647–2661 (2020). https://doi.org/10.1007/s12633-019-00361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00361-9

Keywords

Navigation