Skip to main content

Advertisement

Log in

Experimental Investigation, Predictive Modeling, Parametric Optimization and Cost Analysis in Electrical Discharge Machining of Al-SiC Metal Matrix Composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This experimental investigation deals with electrical discharge machining of Al-SiC metal matrix composite using a brass electrode to analyze the three major technological response characteristics concerning surface roughness, overcut, and material removal rate. Forty-six sets of experimental trials are conducted by considering five cutting parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken’s design of experiments (BBDOEs). Additionally, response surface methodology (RSM), analysis of variance (ANOVA), and statistical technique (here, desirability function approach) followed by computational approach (here, genetic algorithm) are employed respectively for experimental investigation, predictive modeling, and multi-response optimization. Thereafter, the effectiveness of proposed two (RSM, GA) multi-objective optimization techniques are evaluated by the confirmation test. Subsequently, the best optimal solution is employed for economic analysis. Additionally, the effects of discharge current on influencing various response features have also been studied. Finally, an approach has been proposed for sustainability assessment, taking into consideration of the environmental impact and the dielectric consumption created by the electrical discharge machining process. The result shows that discharge current has the significant contribution (72.23% for MRR, 40.56% for Ra, 34.01% in case of OC) in improvement of material removal rate, degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The proposed vegetable oil-based dielectric fluid is biodegradable, eco-friendly, and thus leading sustainable manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohan B, Rajadurai A, Satyanarayana KG (2004) Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. J Mater Process Technol 153-154:978–985

    CAS  Google Scholar 

  2. Kanagarajan D, Karthikeyan R, Palanikumar K, Sivaraj P (2008) Influence of process parameters on electric discharge machining of WC/30%co composites. Proc Inst Mech Eng B J Eng Manuf 222(7):807–815

    CAS  Google Scholar 

  3. Gohil V, Puri YM (2016) Statistical analysis of material removal rate and surface roughness in electrical discharge turning of titanium alloy (Ti-6Al-4V). Proc Inst Mech Eng B J Eng Manuf 232(9):1603–1614

    Google Scholar 

  4. Belgassim O, Abusaada A (2011) Investigation of the influence of EDM parameters on the overcut for AISI D3 tool steel. Proc Inst Mech Eng B J Eng Manuf 226(2):365–370

    Google Scholar 

  5. Mohanty CP, Satpathy MP, Mahapatra SS, Singh MR (2018) Optimization of cryo-treated EDM variables using TOPSIS-based TLBO algorithm. Sādhanā 43(4):51

    Google Scholar 

  6. Mohanty CP, Mahapatra SS, Singh MR (2017) An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm. Engineering Science and Technology, an International Journal 20(2):552–562

    Google Scholar 

  7. Lee SH, Li XP (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115(3):344–358

    CAS  Google Scholar 

  8. Bhaumik M, Maity K (2018) Effect of different tool materials during EDM performance of titanium grade 6 alloy. Engineering Science and Technology: An International Journal 21(3):507–516

    Google Scholar 

  9. Rahul, Mishra, D. K, Datta, S., & Masanta, M. (2018). Effects of tool electrode on EDM performance of Ti-6Al-4V. Silicon, 10(5), 2263–2277

  10. Raza MH, Wasim A, Ali MA, Hussain S, Jahanzaib M (2018) Investigating the effects of different electrodes on Al6061-SiC-7.5 wt% during electric discharge machining. Int J Adv Manuf Technol 99(9–12):3017–3034

    Google Scholar 

  11. Kumari S, Datta S, Masanta M, Nandi G, Pal PK (2018) Electro-discharge machining of Inconel 825 super alloy: effects of tool material and dielectric Flushing. Silicon 10(5):2079–2099

    CAS  Google Scholar 

  12. Ndaliman MB, Khan AA, Ali MY (2013) Influence of dielectric fluids on surface properties of electrical discharge machined titanium alloy. Proc Inst Mech Eng B J Eng Manuf 227(9):1310–1316

    CAS  Google Scholar 

  13. Zhang Y, Liu Y, Shen Y, Ji R, Li Z, Zheng C (2014) Investigation on the influence of the dielectrics on the material removal characteristics of EDM. J Mater Process Technol 214(5):1052–1061

    CAS  Google Scholar 

  14. Sadagopan P, Mouliprasanth B (2017) Investigation on the influence of different types of dielectrics in electrical discharge machining. Int J Adv Manuf Technol 92(1–4):277–291

    Google Scholar 

  15. Li C, Xu X, Li Y, Tong H, Ding S, Kong Q, Zhao L, Ding J (2019) Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel alloy. J Alloys Compd 783:95–102

    CAS  Google Scholar 

  16. Chiang K-T, Chang F-P, Tsai D-C (2007) Modeling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology. J Mater Process Technol 182(1–3):525–533

    CAS  Google Scholar 

  17. Habib SS (2009) Study of the parameters in electrical discharge machining through response surface methodology approach. Appl Math Model 33(12):4397–4407

    Google Scholar 

  18. Prabhu S, Uma M, Vinayagam BK (2013) Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling. J Braz Soc Mech Sci Eng 36(3):637–652

    Google Scholar 

  19. Hourmand M, Farahany S, Sarhan AAD, Noordin MY (2014) Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77(5–8):831–838

    Google Scholar 

  20. Barenji RV, Pourasl HH, Khojastehnezhad VM (2016) Electrical discharge machining of the AISI D6 tool steel: prediction and modeling of the material removal rate and tool wear ratio. Precis Eng 45:435–444

    Google Scholar 

  21. Soundhar A, Zubar HA, Sultan MTBH, Kandasamy J (2019) Dataset on optimization of EDM machining parameters by using central composite design. Data in Brief 23:103671

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mandal D, Pal SK, Saha P (2007) Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater Process Technol 186(1–3):154–162

    CAS  Google Scholar 

  23. Markopoulos AP, Manolakos DE, Vaxevanidis NM (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J Intell Manuf 19(3):283–292

    Google Scholar 

  24. Pradhan MK, Das R, Biswas CK (2009) Comparisons of neural network models on surface roughness in electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf 223(7):801–808

    Google Scholar 

  25. Sidhu SS, Batish A, Kumar S (2013) Neural network–based modeling to predict residual stresses during electric discharge machining of Al/SiC metal matrix composites. Proc Inst Mech Eng B J Eng Manuf 227(11):1679–1692

    CAS  Google Scholar 

  26. Kumar S, Batish A, Singh R, Singh TP (2014) A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J Mech Sci Technol 28(7):2831–2844

    Google Scholar 

  27. Ong, P., Chong, C. H., bin Rahim, M. Z., Lee, W. K., Sia, C. K., & bin Ahmad, M. A. H. (2018). Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond. J Intell Manuf doi:https://doi.org/10.1007/s10845-018-1443-6, 31, 227, 247

  28. Lin M, Tsao C, Hsu C, Chiou A, Huang P, Lin Y (2013) Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method. Trans Nonferrous Metals Soc China 23(3):661–666

    Google Scholar 

  29. Nikalje AM, Kumar A, Srinadh KVS (2013) Influence of parameters and optimization of EDM performance measures on MDN 300 steel using Taguchi method. Int J Adv Manuf Technol 69(1–4):41–49

    Google Scholar 

  30. Tang L, Guo YF (2013) Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. Int J Adv Manuf Technol 70(5–8):1369–1376

    Google Scholar 

  31. Gaikwad V, Jatti VS (2018) Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method. Journal of King Saud University - Engineering Sciences 30(3):266–272

    Google Scholar 

  32. Jung JH, Kwon WT (2010) Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis. J Mech Sci Technol 24(5):1083–1090

    Google Scholar 

  33. Singh S (2012) Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3p/20P composites by grey relational analysis. Int J Adv Manuf Technol 63(9–12):1191–1202

    Google Scholar 

  34. Yadav US, Yadava V (2014) Experimental modeling and multiobjective optimization of electrical discharge drilling of aerospace superalloy material. Proc Inst Mech Eng B J Eng Manuf 229(10):1764–1780

    Google Scholar 

  35. Khanna R, Kumar A, Garg MP, Singh A, Sharma N (2015) Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory. Journal of Industrial Engineering International 11(4):459–472

    Google Scholar 

  36. Selvarajan L, Manohar M, Udhaya kumar A, Dhinakaran P (2017) Modelling and experimental investigation of process parameters in EDM of Si3N4-TiN composites using GRA-RSM. J Mech Sci Technol 31(1):111–122

    Google Scholar 

  37. Tzeng C-J, Chen R-Y (2013) Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach. Int J Precis Eng Manuf 14(5):709–717

    Google Scholar 

  38. Gopalakannan S, Senthilvelan T (2013) Application of response surface method on machining of Al–SiC nano-composites. Measurement 46(8):2705–2715

    Google Scholar 

  39. Hegab HA, Gadallah MH, Esawi AK (2015) Modeling and optimization of electrical discharge machining (EDM) using statistical design. Manufacturing Review 2:21

    Google Scholar 

  40. Swiercz R, Oniszczuk-Świercz D, Chmielewski T (2019) Multi-response optimization of electrical discharge machining using the desirability function. Micromachines 10(1):72

    PubMed Central  Google Scholar 

  41. Jagadish, & Ray, A. (2015) Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int J Adv Manuf Technol 87(5–8):1299–1311

  42. Sahu SN, Nayak NC (2018) Multi-criteria decision making with PCA in EDM of A2 tool steel. Materials Today: Proceedings 5(9):18641–18648

    CAS  Google Scholar 

  43. Routara BC, Bhuyan RK, Parida AK (2014) Application of the entropy weight and TOPSIS method on Al–12% SiC metal matrix composite during EDM. International Journal of Manufacturing, Materials, and Mechanical Engineering 4(4):49–63

    Google Scholar 

  44. Dewangan S, Gangopadhyay S, Biswas CK (2015) Study of surface integrity and dimensional accuracy in EDM using fuzzy TOPSIS and sensitivity analysis. Measurement 63:364–376

    Google Scholar 

  45. Tripathy S, Tripathy DK (2016) Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Engineering Science and Technology, an International Journal 19(1):62–70

    Google Scholar 

  46. Padhee S, Nayak N, Panda SK, Dhal PR, Mahapatra SS (2012) Multi-objective parametric optimization of powder mixed electro-discharge machining using response surface methodology and non-dominated sorting genetic algorithm. Sadhana 37(2):223–240

    Google Scholar 

  47. Bharti PS, Maheshwari S, Sharma C (2012) Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J Mech Sci Technol 26(6):1875–1883

    Google Scholar 

  48. Baraskar SS, Banwait SS, Laroiya SC (2013) Multiobjective optimization of electrical discharge machining process using a hybrid method. Mater Manuf Process 28(4):348–354

    CAS  Google Scholar 

  49. Sharma N, Singh G, Gupta MK, Hegab H, Mia M (2019) Investigations of surface integrity, bio-activity and performance characteristics during wire- electrical discharge machining of Ti-6Al-7Nb biomedical alloy. Materials Research Express 6(9):1–16

    CAS  Google Scholar 

  50. Majumder A, Das PK, Majumder A, Debnath M (2014) An approach to optimize the EDM process parameters using desirability-based multi-objective PSO. Production & Manufacturing Research 2(1):228–240

    Google Scholar 

  51. Mohanty CP, Mahapatra SS, Singh MR (2014) A particle swarm approach for multi-objective optimization of electrical discharge machining process. J Intell Manuf 27(6):1171–1190

    Google Scholar 

  52. Dey A, Debnath M, Pandey KM (2017) Analysis of effect of machining parameters during electrical discharge machining using Taguchi-based multi-objective PSO. Int J Comput Intell Appl 16(02):1750010

    Google Scholar 

  53. Moghaddam MA, Kolahan F (2019) Using combined artificial neural network and particle swarm optimization algorithm for modeling and optimization of electrical discharge machining process. Scientia Iranica. Doi: https://doi.org/10.24200/SCI.2019.5152.1123

  54. Yildiz Y, Sundaram MM, Rajurkar KP (2012) Statistical analysis and optimization study on the machinability of beryllium–copper alloy in electro discharge machining. Proc Inst Mech Eng B J Eng Manuf 226(11):1847–1861

    CAS  Google Scholar 

  55. Muthuramalingam T, Mohan B (2013) Influence of discharge current pulse on machinability in electrical discharge machining. Mater Manuf Process 28(4):375–380

    CAS  Google Scholar 

  56. Torres A, Puertas I, Luis CJ (2015) EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes. Int J Adv Manuf Technol 84(9–12):2671–2688

    Google Scholar 

  57. Rahul, Datta, S., Biswal, B. B., & Mahapatra, S. S. (2019). Machinability analysis of Inconel 601, 625, 718 and 825 during electro-discharge machining: on evaluation of optimal parameters setting. Measurement, 137, 382–400

  58. Chen Y, Mahdavian S (1999) Parametric study into erosion wear in a computer numerical controlled electro-discharge machining process. Wear 236(1–2):350–354

    CAS  Google Scholar 

  59. Mukhopadhyay P, Adhikary S, Samanta AK, Maiti S, Khan S, Mudi S (2019) External force assisted electro discharge machining of SS 316. Materials Today: Proceedings 19:626–629. https://doi.org/10.1016/j.matpr.2019.07.743

    Article  CAS  Google Scholar 

  60. Rahul DS, Masanta M (2018) Surface integrity and metallurgical characteristics of the EDMed work surfaces of A2 tool steel (SAE 304SS), Inconel 601 and Ti-6Al-4V: a comparative analysis. Silicon 10(4):1557–1572

    CAS  Google Scholar 

  61. Costa NR, Lourenço J, Pereira ZL (2011) Desirability function approach: A review and performance evaluation in adverse conditions. Chemom Intell Lab Syst 107(2):234–244

    CAS  Google Scholar 

  62. Skrabalak G (2018) Influence of electrode tool length on the micro EDM drilling performance. Procedia CIRP 68:594–598

    Google Scholar 

  63. Jamil M, Khan AM, Hegab H, Mia M, Gupta MK (2019) Modeling, multi-objective optimization and cost estimation of bone drilling under micro-cooling spray technique: an integrated analysis. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-019-00635-x

  64. Jayal AD, Badurdeen F, Dillon OW, Jawahir IS (2010) Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP J Manuf Sci Technol 2(3):144–152

    Google Scholar 

  65. D’Urso G, Giardini C, Ravasio C (2018) Effects of electrode and workpiece materials on the sustainability of micro-EDM drilling process. Int J Precis Eng Manuf 19(11):1727–1734

    Google Scholar 

  66. Pellegrini G, Ravasio C (2019) Evaluation of the sustainability of the micro-electrical discharge milling process. Advances in Production Engineering & Management 14(3):343–354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhansu Ranjan Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, S., Das, S.R. & Dhupal, D. Experimental Investigation, Predictive Modeling, Parametric Optimization and Cost Analysis in Electrical Discharge Machining of Al-SiC Metal Matrix Composite. Silicon 13, 1017–1040 (2021). https://doi.org/10.1007/s12633-020-00482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00482-6

Keywords

Navigation