Skip to main content

Advertisement

Log in

Comparative study on the structural make-up and mechanical behavior of silicon and silver doped amorphous carbon films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon (Si) and silver (Ag) doped amorphous carbon (a-C) thin film were deposited on chrome nitrided 316 LVM stainless steel using filtered cathodic vacuum arc (FCVA) deposition technique to obtain Si:a-C and Ag:a-C thin film. The morphology of the films was evaluated using atomic force microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation and nanoscratch tests. The surface quality of Ag:a-C film appeared inferior owing to the formation of Ag agglomerates on the surface. Raman studies indicated higher shifting and narrowing of G-band in Ag:a-C film resulting in increased sp2 hybridization. Also, the ID/IG ratio of Si:a-C film (1.3) was lesser than Ag:a-C (2.3) film indicative of higher sp3 content in the former. This has propounded to improved mechanical attributes such as hardness (24.5 ± 3.8 GPa), elastic modulus (241 ± 14 GPa), H/E (0.103 ± 0.11), H3/E2 (0.282 ± 0.021 GPa) and fracture toughness (2.93 MPa.m1/2) in Si:a-C film. Further, Ag:a-C film suffered severe radial cracks during indentation at higher load owing to debonding. On the other hand, Si:a-C film exhibited the formation of circumferential cracks during indentation attributed to higher compressive stress in the film. What is more, Si:a-C showcased better film adhesion in Rockwell-C adhesion test with lesser delamination at the impression edge. This is further corroborated by microscratch test depicting higher Lc2 value and adhesive energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang J, Cao X, Zhibin L, Zhang G, Xue Q (2020) The improved mechanical and tribological properties of amorphous carbon film by doping boron carbide. Ceram Int 46(7):9878–9884. https://doi.org/10.1016/j.ceramint.2019.12.263

    Article  CAS  Google Scholar 

  2. Nishikawa J, Sugihara N, Nakano M, Hieda J, Ohtake N, Akasaka H (2018) Effect of Si incorporation on corrosion resistance of hydrogenated amorphous carbon film. Diam Relat Mater 90:207–213. https://doi.org/10.1016/j.diamond.2018.10.017

    Article  CAS  Google Scholar 

  3. Li, Wei, Lin-Tao Liu, Zheng-Xian Li, Yan-Feng Wang, Hong-Zhan Li, and Jia-Jun Lei. "Corrosion and conductivity behavior of titanium-doped amorphous carbon film coated SS316L in the environment of PEMFCs." Mater Chem Phys (2021): 125234. https://doi.org/10.1016/j.matchemphys.2021.125234

  4. Tillmann, Wolfgang, Nelson Filipe Lopes Dias, Carlo Franke, David Kokalj, Dominic Stangier, Viviane Filor, Rafael Hernán Mateus-Vargas et al. "Tribo-mechanical properties and biocompatibility of Ag-containing amorphous carbon films deposited onto Ti6Al4V." Surface and Coatings Technology (2021): 127384. https://doi.org/10.1016/j.surfcoat.2021.127384

  5. Patnaik L, Maity SR, Kumar S (2021) Evaluation of Gamma irradiated Ti6Al4V and Silver alloyed aC coatings as friction pair via Response Surface Methodology. Advances in Materials and Processing Technologies:1–18. https://doi.org/10.1080/2374068X.2021.1945277

  6. Sainio S, Nordlund D, Caro MA, Gandhiraman R, Koehne J, Wester N, Koskinen J, Meyyappan M, Laurila T (2016) Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-C) thin film electrodes and implications of their electrochemical properties. J Phys Chem C 120(15):8298–8304. https://doi.org/10.1021/acs.jpcc.6b02342

    Article  CAS  Google Scholar 

  7. Capano MA, McDevitt NT, Singh RK, Qian F (1996) Characterization of amorphous carbon thin films. J Vac Sci Technol A 14(2):431–435. https://doi.org/10.1116/1.580101

    Article  CAS  Google Scholar 

  8. Jin T, Ma M, Li B, Gao Y, Zhao Q, Zhao Z, Chen J, Tian Y (2020) Mechanical polishing of ultrahard nanotwinned diamond via transition into hard sp2-sp3 amorphous carbon. Carbon 161:1–6. https://doi.org/10.1016/j.carbon.2020.01.041

    Article  CAS  Google Scholar 

  9. Bonelli, M., A. C. Ferrari, A. Fioravanti, A. Li Bassi, A. Miotello, and Paolo Maria Ossi. "Structure and mechanical properties of low stress tetrahedral amorphous carbon films prepared by pulsed laser deposition." The European Physical Journal B-Condensed Matter and Complex Systems 25, no. 3 (2002): 269-280. https://doi.org/10.1140/epjb/e20020031

  10. Robertson J (1986) Amorphous carbon. Adv Phys 35(4):317–374. https://doi.org/10.1080/00018738600101911

    Article  CAS  Google Scholar 

  11. Roy, Ritwik Kumar, and Kwang-Ryeol Lee. "Biomedical applications of diamond-like carbon coatings: A review." Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 83, no. 1 (2007): 72-84. https://doi.org/10.1002/jbm.b.30768

  12. Cui FZ, Li DJ (2000) A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf Coat Technol 131(1-3):481–487. https://doi.org/10.1016/S0257-8972(00)00809-4

    Article  CAS  Google Scholar 

  13. Wang, Ai-Ying, Kwang-Ryeol Lee, Jae-Pyoung Ahn, and Jun Hee Han. "Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique." Carbon 44, no. 9 (2006): 1826-1832. https://doi.org/10.1016/j.carbon.2005.12.045

  14. Park, Yong Seob, and Byungyou Hong. "Structural and tribological properties of nitrogen doped amorphous carbon thin films synthesized by CFUBM sputtering method for protective coatings." Applied Surface Science 255, no. 7 (2009): 3913-3917. https://doi.org/10.1016/j.apsusc.2008.07.190

  15. Etula J, Wester N, Sainio S, Laurila T, Koskinen J (2018) Characterization and electrochemical properties of iron-doped tetrahedral amorphous carbon (ta-C) thin films. RSC Adv 8(46):26356–26363. https://doi.org/10.1039/C8RA04719G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bai WQ, Li LL, Xie YJ, Liu DG, Wang XL, Jin G, Tu JP (2016) Corrosion and tribocorrosion performance of M (MTa, Ti) doped amorphous carbon multilayers in Hank's solution. Surf Coat Technol 305:11–22. https://doi.org/10.1016/j.surfcoat.2016.07.078

    Article  CAS  Google Scholar 

  17. Xiang D, Tan X, Sui X, He J, Chen C, Hao J, Liao Z, Liu W (2021) Comparative study on microstructure, bio-tribological behavior and cytocompatibility of Cr-doped amorphous carbon films for Co–Cr–Mo artificial lumbar disc. Tribol Int 155:106760. https://doi.org/10.1016/j.triboint.2020.106760

    Article  CAS  Google Scholar 

  18. Ming MY, Piliptsou DG, Rudenkov AS, Rogachev AV, Jiang X, Sun D, Chaus AS, Balmakou A (2017) Structure, mechanical and tribological properties of Ti-doped amorphous carbon films simultaneously deposited by magnetron sputtering and pulse cathodic arc. Diam Relat Mater 77:1–9. https://doi.org/10.1016/j.diamond.2017.05.010

    Article  CAS  Google Scholar 

  19. Tillmann, Wolfgang, Nelson Filipe Lopes Dias, Dominic Stangier, Alexander Nienhaus, Carl Arne Thomann, Adrian Wittrock, Henning Moldenhauer, and Jörg Debus. "Effect of the bias voltage on the structural and tribo-mechanical properties of Ag-containing amorphous carbon films." Diamond and Related Materials 105 (2020): 107803. https://doi.org/10.1016/j.diamond.2020.107803

  20. Jing PP, Gong YL, Deng QY, Zhang YZ, Huang N, Leng YX (2020) The formation of the “rod-like wear debris” and tribological properties of Ag-doped diamond-like carbon films fabricated by a high-power pulsed plasma vapor deposition technique. Vacuum 173:109125. https://doi.org/10.1016/j.vacuum.2019.109125

    Article  CAS  Google Scholar 

  21. Bociaga D, Sobczyk-Guzenda A, Szymanski W, Jedrzejczak A, Jastrzebska A, Olejnik A, Jastrzebski K (2017) Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications. Appl Surf Sci 417:23–33. https://doi.org/10.1016/j.apsusc.2017.03.223

    Article  CAS  Google Scholar 

  22. Kim J-I, Jang Y-J, Kim J, Kim J (2021) Effects of silicon doping on low-friction and high-hardness diamond-like carbon coating via filtered cathodic vacuum arc deposition. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-83158-4

    Article  CAS  Google Scholar 

  23. Donnet C (1998) Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review. Surf Coat Technol 100:180–186. https://doi.org/10.1016/S0257-8972(97)00611-7

    Article  Google Scholar 

  24. Lee W-Y, Jang Y-J, Tokoroyama T, Murashima M, Umehara N (2020) Effect of defects on wear behavior in ta-C coating prepared by filtered cathodic vacuum arc deposition. Diam Relat Mater 105:107789. https://doi.org/10.1016/j.diamond.2020.107789

    Article  CAS  Google Scholar 

  25. Choleridis A, Sao-Joao S, Ben-Mohamed J, Chern D, Barnier V, Kermouche G, Heau C et al (2018) Experimental study of wear-induced delamination for DLC coated automotive components. Surf Coat Technol 352:549–560. https://doi.org/10.1016/j.surfcoat.2018.08.048

    Article  CAS  Google Scholar 

  26. Kulikovsky V, Bohac P, Franc F, Deineka A, Vorlicek V, Jastrabik L (2001) Hardness, intrinsic stress, and structure of the aC and aC: H films prepared by magnetron sputtering. Diam Relat Mater 10(3-7):1076–1081. https://doi.org/10.1016/S0925-9635(00)00525-2

    Article  CAS  Google Scholar 

  27. Hong, Eunpyo, Taewoo Kim, Seon-Hong Lee, Jung Woo Lee, and Heesoo Lee. "Atomic structure and residual stress of carbon-doped TiMeN (Me= Zr, Al, and Cr) coatings on mechanical properties." Ceramics International 45, no. 7 (2019): 9192-9196. https://doi.org/10.1016/j.ceramint.2019.01.263

  28. Vereschaka A, Volosova M, Chigarev A, Sitnikov N, Ashmarin A, Sotova C, Bublikov J, Lytkin D (2020) Influence of the thickness of a nanolayer composite coating on values of residual stress and the nature of coating wear. Coatings 10(1):63. https://doi.org/10.3390/coatings10010063

    Article  CAS  Google Scholar 

  29. Kumar S, Maity SR, Patnaik L (2021) Mechanical and Scratch behaviour of TiAlN Coated and 3D Printed H13 Tool Steel. Advances in Materials and Processing Technologies:1–15. https://doi.org/10.1080/2374068X.2021.1927642

  30. Yu X, Ning ZW, Hua M, Wang CB (2013) Influence of silver incorporation on toughness improvement of diamond-like carbon film prepared by ion beam assisted deposition. J Adhes 89(7):578–593. https://doi.org/10.1080/00218464.2013.768121

    Article  CAS  Google Scholar 

  31. Xu M, Li L, Cai X, Liu Y, Chen Q, Chu PK (2006) Improvement of adhesion strength of amorphous carbon films on tungsten ion implanted 321 stainless steel substrate. Diam Relat Mater 15(4-8):952–957. https://doi.org/10.1016/j.diamond.2005.11.005

    Article  CAS  Google Scholar 

  32. Gayathri S, Kumar N, Krishnan R, Ravindran TR, Dash S, Tyagi AK, Raj B, Sridharan M (2012) Tribological properties of pulsed laser deposited DLC/TM (TM= Cr, Ag, Ti and Ni) multilayers. Tribol Int 53:87–97. https://doi.org/10.1016/j.triboint.2012.04.015

    Article  CAS  Google Scholar 

  33. Gayathri, S., R. Krishnan, T. R. Ravindran, S. Tripura Sundari, S. Dash, A. K. Tyagi, Baldev Raj, and M. Sridharan. "Spectroscopic studies on DLC/TM (Cr, Ag, Ti, Ni) multilayers." Materials Research Bulletin 47, no. 3 (2012): 843-849. https://doi.org/10.1016/j.materresbull.2011.11.042

  34. Shahsavari, Fatemeh, Maryam Ehteshamzadeh, Mohamad Hassan Amin, and Anders J. Barlow. "A comparative study of surface morphology, mechanical and tribological properties of DLC films deposited on Cr and Ni nanolayers." Ceramics International 46, no. 4 (2020): 5077-5085. https://doi.org/10.1016/j.ceramint.2019.10.251

  35. Alyones J, Salameh M, Abdallah B (2020) Investigation of Pressure Effect on Structural, Mechanical Properties and Corrosion Performance of CrN Thin Films. Silicon 12(10):2489–2495. https://doi.org/10.1007/s12633-019-00345-9

    Article  CAS  Google Scholar 

  36. Abdallah B, Kakhia M, Alssadat W, Zetoun W (2021) Study of Power Effect on Structural, Mechanical Properties and Corrosion Behavior of CrN thin Films Deposited by Magnetron Sputtering. Protection of Metals and Physical Chemistry of Surfaces 57(1):80–87. https://doi.org/10.1134/S2070205120060027

    Article  CAS  Google Scholar 

  37. Du JW, Chen L, Chen J, Yong D (2020) Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum 179:109468. https://doi.org/10.1016/j.vacuum.2020.109468

    Article  CAS  Google Scholar 

  38. Kumar, Sunil, Saikat Ranjan Maity, and Lokeswar Patnaik. "Effect of tribological process parameters on the wear and frictional behaviour of Cr-(CrN/TiN) composite coating: an experimental and analytical study." Ceramics International 47, no. 11 (2021): 16018-16028. https://doi.org/10.1016/j.ceramint.2021.02.176

  39. Patnaik, Lokeswar, Saikat Ranjan Maity, and Sunil Kumar. "Modeling of wear parameters and multi-criteria optimization by box-behnken design of AlCrN thin film against gamma-irradiated Ti6Al4V Counterbody." Ceramics International 47, no. 14 (2021): 20494-20511. https://doi.org/10.1016/j.ceramint.2021.04.059

  40. Kumar, Sunil, Saikat Ranjan Maity, and Lokeswar Patnaik. "Effect of annealing on structural, mechanical and tribological properties of Cr-(CrN/TiAlN) coating." Advances in Materials and Processing Technologies (2021): 1-14. https://doi.org/10.1080/2374068X.2021.1946755

  41. Chetcuti R, Dearnley PA, Mazzonello A, Buhagiar J, Mallia B (2020) Tribocorrosion response of duplex layered CoCrMoC/CrN and CrN/CoCrMoC coatings on implant grade 316LVM stainless steel. Surf Coat Technol 384:125313. https://doi.org/10.1016/j.surfcoat.2019.125313

    Article  CAS  Google Scholar 

  42. Tillmann W, Dias NFL, Stangier D, Matveev S, Thomann C-A, Debus J (2021) Structure and tribo-mechanical properties of Si-and W-containing amorphous carbon based multilayers. Applied Surface Science Advances 5:100105. https://doi.org/10.1016/j.apsadv.2021.100105

    Article  Google Scholar 

  43. Jantschner O, Field SK, David H, Fian A, Music D, Schneider JM, Zorn K, Mitterer C (2015) Origin of temperature-induced low friction of sputtered Si-containing amorphous carbon coatings. Acta Mater 82:437–446. https://doi.org/10.1016/j.actamat.2014.09.030

    Article  CAS  Google Scholar 

  44. Chaus AS, Jiang XH, Pokorný P, Piliptsou DG, Rogachev AV (2018) Improving the mechanical property of amorphous carbon films by silicon doping. Diam Relat Mater 82:137–142. https://doi.org/10.1016/j.diamond.2018.01.013

    Article  CAS  Google Scholar 

  45. Constantinou, Marios, Maria Pervolaraki, Petros Nikolaou, Costis Prouskas, P. Patsalas, P. Kelires, John Giapintzakis, and Georgios Constantinides. "Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC: Ag films: Enhanced nanotribological response." Surface and Coatings Technology 309 (2017): 320-330. https://doi.org/10.1016/j.surfcoat.2016.11.084

  46. Ong S-E, Zhang S, Hejun D, Too H-C, Aung K-N (2007) Influence of silicon concentration on the haemocompatibility of amorphous carbon. Biomaterials 28(28):4033–4038. https://doi.org/10.1016/j.biomaterials.2007.05.031

    Article  CAS  PubMed  Google Scholar 

  47. Orrit-Prat, Jordi, Raül Bonet, Elisa Rupérez, Miquel Punset, Mónica Ortiz-Hernández, Jordi Guillem-Marti, Arturo Lousa et al. "Bactericidal silver-doped DLC coatings obtained by pulsed filtered cathodic arc co-deposition." Surface and Coatings Technology 411 (2021): 126977. https://doi.org/10.1016/j.surfcoat.2021.126977

  48. Zhang D, Yi P, Peng L, Lai X, Jibin P (2019) Amorphous carbon films doped with silver and chromium to achieve ultra-low interfacial electrical resistance and long-term durability in the application of proton exchange membrane fuel cells. Carbon 145:333–344. https://doi.org/10.1016/j.carbon.2019.01.050

    Article  CAS  Google Scholar 

  49. Mo JL, Zhu MH (2009) Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc. Appl Surf Sci 255(17):7627–7634. https://doi.org/10.1016/j.apsusc.2009.04.040

    Article  CAS  Google Scholar 

  50. Vidakis N, Antoniadis A, Bilalis N (2003) The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. J Mater Process Technol 143:481–485. https://doi.org/10.1016/S0924-0136(03)00300-5

    Article  Google Scholar 

  51. Chang C-L, Chen W-C, Tsai P-C, Ho W-Y, Wang D-Y (2007) Characteristics and performance of TiSiN/TiAlN multilayers coating synthesized by cathodic arc plasma evaporation. Surf Coat Technol 202(4-7):987–992. https://doi.org/10.1016/j.surfcoat.2007.06.024

    Article  CAS  Google Scholar 

  52. Sribalaji, M., OS Asiq Rahman, Tapas Laha, and Anup Kumar Keshri. "Nanoindentation and nanoscratch behavior of electroless deposited nickel-phosphorous coating." Materials Chemistry and Physics 177 (2016): 220-228. https://doi.org/10.1016/j.matchemphys.2016.04.022

  53. Kumar, Sunil, Saikat Ranjan Maity, and Lokeswar Patnaik. "Friction and tribological behavior of bare nitrided, TiAlN and AlCrN coated MDC-K hot work tool steel." Ceramics International 46, no. 11 (2020): 17280-17294. https://doi.org/10.1016/j.ceramint.2020.04.015

  54. Patnaik, Lokeswar, Saikat Ranjan Maity, and Sunil Kumar. "Lubricated sliding of CFRPEEK/AlCrN film tribo-pair and its effect on the mechanical properties and structural integrity of the AlCrN film." Materials Chemistry and Physics 273 (2021): 124980. https://doi.org/10.1016/j.matchemphys.2021.124980

  55. Kumar, Sunil, Saikat Ranjan Maity, and Lokeswar Patnaik. "Wear assessment of Cr2O3/TiAlN coated DAC-10 tool steel against steel and Al2O3 counterbodies." International Journal of Applied Ceramic Technology. https://doi.org/10.1111/ijac.13935

  56. Yu W, Wang J, Huang W, Cui L, Wang L (2020) Improving high temperature tribological performances of Si doped diamond-like carbon by using W interlayer. Tribol Int 146:106241. https://doi.org/10.1016/j.triboint.2020.106241

    Article  CAS  Google Scholar 

  57. Guo, Chao-Qian, Song-Sheng Lin, Di Gao, Qian Shi, Chun-Bei Wei, Ming-Jiang Dai, Yi-Fan Su et al. "Modulation of Si on microstructure and tribo-mechanical properties of hydrogen-free DLC films prepared by magnetron sputtering." Applied Surface Science 509 (2020): 145381. https://doi.org/10.1016/j.apsusc.2020.145381

  58. Zhang, H-S., Jose L. Endrino, and Andre Anders. "Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver." Applied Surface Science 255, no. 5 (2008): 2551-2556. https://doi.org/10.1016/j.apsusc.2008.07.193

  59. Manninen, Noora Kristiina, Ramon Escobar Galindo, Sandra Carvalho, and Albano Cavaleiro. "Silver surface segregation in Ag-DLC nanocomposite coatings." Surface and Coatings Technology 267 (2015): 90-97. https://doi.org/10.1016/j.surfcoat.2014.12.029

  60. Manninen NK, Escobar Galindo R, Benito N, Figueiredo NM, Cavaleiro A, Palacio C, Carvalho S (2011) Ag–Ti (C, N)-based coatings for biomedical applications: influence of silver content on the structural properties. J Phys D Appl Phys 44(37):375501. https://doi.org/10.1088/0022-3727/44/37/375501

    Article  CAS  Google Scholar 

  61. Morrison ML, Buchanan RA, Liaw PK, Berry CJ, Brigmon RL, Riester L, Abernathy H, Jin C, Narayan RJ (2006) Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films. Diam Relat Mater 15(1):138–146. https://doi.org/10.1016/j.diamond.2005.08.031

    Article  CAS  Google Scholar 

  62. Choi, Heon Woong, Jung-Hae Choi, Kwang-Ryeol Lee, Jae-Pyoung Ahn, and Kyu Hwan Oh. "Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system." Thin Solid Films 516, no. 2-4 (2007): 248-251. https://doi.org/10.1016/j.tsf.2007.06.154

  63. Wang Y, Wang J, Zhang G, Wang L, Yan P (2012) Microstructure and tribology of TiC (Ag)/aC: H nanocomposite coatings deposited by unbalanced magnetron sputtering. Surf Coat Technol 206(14):3299–3308. https://doi.org/10.1016/j.surfcoat.2012.01.036

    Article  CAS  Google Scholar 

  64. Souza, Poliana S., Anderson J. Santos, Monique AP Cotrim, Alexandre M. Abrão, and Marcelo A. Câmara. "Analysis of the surface energy interactions in the tribological behavior of ALCrN and TIAlN coatings." Tribology International 146 (2020): 106206. https://doi.org/10.1016/j.triboint.2020.106206

  65. Zhang, Teng Fei, Zhi Xin Wan, Ji Cheng Ding, Shihong Zhang, Qi Min Wang, and Kwang Ho Kim. "Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films." Applied Surface Science 435 (2018): 963-973. https://doi.org/10.1016/j.apsusc.2017.11.194

  66. Bai M, Yang L, Li J, Luo L, Sun S, Inkson B (2021) Mechanical and tribological properties of Si and W doped diamond like carbon (DLC) under dry reciprocating sliding conditions. Wear 484:204046. https://doi.org/10.1016/j.wear.2021.204046

    Article  CAS  Google Scholar 

  67. Jing PP, Ma DL, Gong YL, Luo XY, Zhang Y, Weng YJ, Leng YX (2021) Influence of Ag doping on the microstructure, mechanical properties, and adhesion stability of diamond-like carbon films. Surf Coat Technol 405:126542. https://doi.org/10.1016/j.surfcoat.2020.126542

    Article  CAS  Google Scholar 

  68. Swiatek L, Olejnik A, Grabarczyk J, Jedrzejczak A, Sobczyk-Guzenda A, Kaminska M, Jakubowski W, Szymanski W, Bociaga D (2016) Multi-doped diamond like-carbon coatings (DLC-Si/Ag) for biomedical applications fabricated using the modified chemical vapour deposition method. Diam Relat Mater 67:54–62. https://doi.org/10.1016/j.diamond.2016.03.005

    Article  CAS  Google Scholar 

  69. Xia K, Chunxiang L, Yang Y (2013) Preparation of anti-oxidative SiC/SiO2 coating on carbon fibers from vinyltriethoxysilane by sol–gel method. Appl Surf Sci 265:603–609. https://doi.org/10.1016/j.apsusc.2012.11.056

    Article  CAS  Google Scholar 

  70. Gadiou R, Serverin S, Gibot P, Vix-Guterl C (2008) The synthesis of SiC and TiC protective coatings for carbon fibers by the reactive replica process. J Eur Ceram Soc 28(11):2265–2274. https://doi.org/10.1016/j.jeurceramsoc.2008.02.022

    Article  CAS  Google Scholar 

  71. Flege S, Hatada R, Hanauer A, Ensinger W, Morimura T, Baba K (2017) Preparation of metal-containing diamond-like carbon films by magnetron sputtering and plasma source ion implantation and their properties. Adv Mater Sci Eng 2017. https://doi.org/10.1155/2017/9082164

  72. Baba, Koumei, Ruriko Hatada, S. Flege, and W. Ensinger. "Preparation and properties of Ag-containing diamond-like carbon films by magnetron plasma source ion implantation." Advances in Materials Science and Engineering 2012 (2012). https://doi.org/10.1155/2012/536853

  73. Písařík P, Jelínek M, Remsa J, Mikšovský J, Zemek J, Jurek K, Kubinová Š, Lukeš J, Šepitka J (2017) Antibacterial, mechanical and surface properties of Ag-DLC films prepared by dual PLD for medical applications. Mater Sci Eng C 77:955–962. https://doi.org/10.1016/j.msec.2017.04.005

    Article  CAS  Google Scholar 

  74. Bewilogua K, Hofmann D (2014) History of diamond-like carbon films—from first experiments to worldwide applications. Surf Coat Technol 242:214–225. https://doi.org/10.1016/j.surfcoat.2014.01.031

    Article  CAS  Google Scholar 

  75. Tamor, M. A, and W. C. Vassell. "Raman “fingerprinting”of amorphous carbon films." Journal of Applied Physics 76, no. 6 (1994): 3823-3830. https://doi.org/10.1063/1.357385

  76. Akhavan B, Ganesan R, Bathgate S, McCulloch DG, Partridge JG, Ionsecu M, Mathews DTA et al (2020) External magnetic field guiding in HiPIMS to control sp3 fraction of tetrahedral amorphous carbon films. J Phys D Appl Phys 54(4):045002. https://doi.org/10.1088/1361-6463/abb9d2

    Article  CAS  Google Scholar 

  77. Choi J, Kawaguchi M, Kato T, Ikeyama M (2007) Deposition of Si-DLC film and its microstructural, tribological and corrosion properties. Microsyst Technol 13(8):1353–1358. https://doi.org/10.1007/s00542-006-0368-8

    Article  CAS  Google Scholar 

  78. Rodriguez BJ, Navabpour P, Proprentner D, Walker M, Sun H, Schiller TL (2021) An alternative approach to the tribological analysis of Si-doped DLC coatings deposited with different bias voltages using Raman spectroscopy mapping. Emergent Materials:1–10. https://doi.org/10.1007/s42247-021-00263-w

  79. Baba K, Hatada R, Flege S, Wolfgang E, Shibata Y, Nakashima J, Sawase T, Morimura T (2013) Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation. Vacuum 89:179–184. https://doi.org/10.1016/j.vacuum.2012.04.015

    Article  CAS  Google Scholar 

  80. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  81. Wang F, Wang L, Xue Q (2016) Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon 96:411–420. https://doi.org/10.1016/j.carbon.2015.09.084

    Article  CAS  Google Scholar 

  82. Robertson J (2002) Diamond-like amorphous carbon. Materials science and engineering: R: Reports 37(4-6):129–281. https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  83. Zuo Z, Bonian H, Chen H, Dong Q, Gang Y (2017) Effect of activators on the properties of nickel coated diamond composite powders. Journal of materials science & technology 33(11):1409–1415. https://doi.org/10.1016/j.jmst.2017.10.001

    Article  CAS  Google Scholar 

  84. Abbas, G. A., P. Papakonstantinou, T. I. T. Okpalugo, J. A. McLaughlin, J. Filik, and Eileen Harkin-Jones. "The improvement in gas barrier performance and optical transparency of DLC-coated polymer by silicon incorporation." Thin Solid Films 482, no. 1-2 (2005): 201-206. https://doi.org/10.1016/j.tsf.2004.11.174

  85. Ōya A, Ōtani S (1979) Catalytic graphitization of carbons by various metals. Carbon 17(2):131–137. https://doi.org/10.1016/0008-6223(79)90020-4

    Article  Google Scholar 

  86. Yamamoto S, Kawana A, Ichimura H, Masuda C (2012) Relationship between tribological properties and sp3/sp2 structure of nitrogenated diamond-like carbon deposited by plasma CVD. Surf Coat Technol 210:1–9. https://doi.org/10.1016/j.surfcoat.2012.07.005

    Article  CAS  Google Scholar 

  87. Patnaik, Lokeswar, Saikat Ranjan Maity, and Sunil Kumar. "Mechanical and tribological assessment of composite AlCrN or aC: Ag-based thin films for implant application." Ceramics International 47, no. 5 (2021): 6736-6752. https://doi.org/10.1016/j.ceramint.2020.11.016

  88. Schultrich, Bernd. “Tetrahedrally bonded amorphous carbon films I: basics, structure and preparation.” Vol. 263. Springer, 2018

  89. Oyen ML, Cook RF (2009) A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater 2(4):396–407. https://doi.org/10.1016/j.jmbbm.2008.10.002

    Article  PubMed  Google Scholar 

  90. Abdoos, Majid, Bipasha Bose, Sushant Rawal, Abul Fazal M. Arif, and Stephen C. Veldhuis. "The influence of residual stress on the properties and performance of thick TiAlN multilayer coating during dry turning of compacted graphite iron." Wear 454 (2020): 203342. https://doi.org/10.1016/j.wear.2020.203342

  91. Tang J-F, Lin C-Y, Yang F-C, Chang C-L (2020) Influence of nitrogen content and bias voltage on residual stress and the tribological and mechanical properties of CrAlN films. Coatings 10(6):546. https://doi.org/10.3390/coatings10060546

    Article  CAS  Google Scholar 

  92. Patnaik L, Maity S, Kumar S (2021) Evaluation of Crack resistance and Adhesive Energy of AlCrN and Ag doped aC Films deposited on Chrome Nitrided 316 LVM Stainless Steel. Advances in Materials and Processing Technologies:1–22. https://doi.org/10.1080/2374068X.2021.1927643

  93. Chang Y-Y, Chao L-C (2021) Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings. Vacuum 190:110241. https://doi.org/10.1016/j.vacuum.2021.110241

    Article  CAS  Google Scholar 

  94. Zhao B, Zhao X, Lin L, Zou L (2020) Effect of bias voltage on mechanical properties, milling performance and thermal crack propagation of cathodic arc ion-plated TiAlN coatings. Thin Solid Films 708:138116. https://doi.org/10.1016/j.tsf.2020.138116

    Article  CAS  Google Scholar 

  95. Fujimoto S, Ohtake N, Takai O (2011) Mechanical properties of silicon-doped diamond-like carbon films prepared by pulse-plasma chemical vapor deposition. Surf Coat Technol 206(5):1011–1015. https://doi.org/10.1016/j.surfcoat.2011.03.106

    Article  CAS  Google Scholar 

  96. Lubwama M, Corcoran B, Sayers K, Kirabira JB, Sebbit A, McDonnell KA, Dowling D (2012) Adhesion and composite micro-hardness of DLC and Si-DLC films deposited on nitrile rubber. Surf Coat Technol 206(23):4881–4886. https://doi.org/10.1016/j.surfcoat.2012.05.079

    Article  CAS  Google Scholar 

  97. Manninen NK, Ribeiro F, Escudeiro A, Polcar T, Carvalho S, Cavaleiro A (2013) Influence of Ag content on mechanical and tribological behavior of DLC coatings. Surf Coat Technol 232:440–446. https://doi.org/10.1016/j.surfcoat.2013.05.048

    Article  CAS  Google Scholar 

  98. Patnaik, Lokeswar, Saikat Ranjan Maity, and Sunil Kumar. "Comprehensive structural, nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer (Ag-DLC/Cr) for biomedical application." Ceramics International 46, no. 14 (2020): 22805-22818. https://doi.org/10.1016/j.ceramint.2020.06.048

  99. Jirout M, Musil J (2006) Effect of addition of Cu into ZrOx film on its properties. Surf Coat Technol 200(24):6792–6800. https://doi.org/10.1016/j.surfcoat.2005.10.022

    Article  CAS  Google Scholar 

  100. Ghadai RK, Das S, Kumar D, Mondal SC, Swain BP (2018) Correlation between structural and mechanical properties of silicon doped DLC thin films. Diam Relat Mater 82:25–32. https://doi.org/10.1016/j.diamond.2017.12.012

    Article  CAS  Google Scholar 

  101. Zhang W, Yamashita S, Kita H (2020) Progress in tribological research of SiC ceramics in unlubricated sliding-A review. Mater Des 190:108528. https://doi.org/10.1016/j.matdes.2020.108528

    Article  CAS  Google Scholar 

  102. Wang Q, Zhou F, Yan J (2016) Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests. Surf Coat Technol 285:203–213. https://doi.org/10.1016/j.surfcoat.2015.11.040

    Article  CAS  Google Scholar 

  103. Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q (2017) Adhesion enhancement of DLC on CoCrMo alloy by diamond and nitrogen incorporation for wear resistant applications. Surf Coat Technol 332:120–127. https://doi.org/10.1016/j.surfcoat.2017.10.050

    Article  CAS  Google Scholar 

  104. Wang Q, Zhou F, Zhou Z, Li LK-Y, Yan J (2017) An investigation on the crack resistance of CrN, CrBN and CrTiBN coatings via nanoindentation. Vacuum 145:186–193. https://doi.org/10.1016/j.vacuum.2017.08.041

    Article  CAS  Google Scholar 

  105. Wang Q, Zhiwei W, Zhou F, Yan J (2015) Comparison of crack resistance between ternary CrSiC and quaternary CrSiCN coatings via nanoindentation. Mater Sci Eng A 642:391–397. https://doi.org/10.1016/j.msea.2015.07.024

    Article  CAS  Google Scholar 

  106. An T, Wen M, Hu CQ, Tian HW, Zheng WT (2008) Interfacial fracture for TiN/SiNx nano-multilayer coatings on Si (1 1 1) characterized by nanoindentation experiments. Mater Sci Eng A 494(1-2):324–328. https://doi.org/10.1016/j.msea.2008.04.020

    Article  CAS  Google Scholar 

  107. Zeng, Zhidan, Liuxiang Yang, Qiaoshi Zeng, Hongbo Lou, Hongwei Sheng, Jianguo Wen, Dean J. Miller et al. "Synthesis of quenchable amorphous diamond." Nature communications 8, no. 1 (2017): 1-7. https://doi.org/10.1038/s41467-017-00395-w

  108. Cai X, Yunhua X, Zhao N, Zhong L, Zhao Z, Wang J (2016) Investigation of the adhesion strength and deformation behaviour of in situ fabricated NbC coatings by scratch testing. Surf Coat Technol 299:135–142. https://doi.org/10.1016/j.surfcoat.2016.05.004

    Article  CAS  Google Scholar 

  109. Dey, Dipanjan, Kalinga Simant Bal, Anitesh Kumar Singh, and Asimava Roy Choudhury. "Hardness and wear behaviour of multiple component coating on Ti-6Al-4V substrate by laser application." Optik 202 (2020): 163555. https://doi.org/10.1016/j.ijleo.2019.163555

  110. Zhang X, Tian X-B, Zhao Z-W, Gao J-B, Zhou Y-W, Gao P, Guo Y-Y, Lv Z (2019) Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates. Surf Coat Technol 364:135–143. https://doi.org/10.1016/j.surfcoat.2019.01.059

    Article  CAS  Google Scholar 

  111. Falsafein M, Ashrafizadeh F, Kheirandish A (2018) Influence of thickness on adhesion of nanostructured multilayer CrN/CrAlN coatings to stainless steel substrate. Surfaces and Interfaces 13:178–185. https://doi.org/10.1016/j.surfin.2018.09.009

    Article  CAS  Google Scholar 

  112. Chang S-Y, Huang Y-C (2007) Analyses of interface adhesion between porous SiO2 low-k film and SiC/SiN layers by nanoindentation and nanoscratch tests. Microelectron Eng 84(2):319–327. https://doi.org/10.1016/j.mee.2006.10.086

    Article  CAS  Google Scholar 

  113. Huang Y-C, Chang S-Y, Chang C-H (2009) Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films. Thin Solid Films 517(17):4857–4861. https://doi.org/10.1016/j.tsf.2009.03.043

    Article  CAS  Google Scholar 

  114. Silva VA, Costa FM, Fernandes AJS, Nazaré MH, Silva RF (2000) Influence of SiC particle addition on the nucleation density and adhesion strength of MPCVD diamond coatings on Si3N4 substrates. Diam Relat Mater 9(3-6):483–488. https://doi.org/10.1016/S0925-9635(99)00285-X

    Article  CAS  Google Scholar 

  115. Yang B, Li H, Biao Y, Huang N, Liu L, Jiang X (2020) Deposition of highly adhesive nanocrystalline diamond films on Ti substrates via diamond/SiC composite interlayers. Diam Relat Mater 108:107928. https://doi.org/10.1016/j.diamond.2020.107928

    Article  CAS  Google Scholar 

  116. Wang T, Zhuang H, Jiang X (2015) One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers. Appl Surf Sci 359:790–796. https://doi.org/10.1016/j.apsusc.2015.10.165

    Article  CAS  Google Scholar 

  117. Meyers, Marc A., A. Mishra, and David J. Benson. "Mechanical properties of nanocrystalline materials." Progress in materials science 51, no. 4 (2006): 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003

  118. Dwivedi, Neeraj, Sushil Kumar, Hitendra K. Malik, C. Sreekumar, Saurabh Dayal, C. M. S. Rauthan, and O. S. Panwar. "Investigation of properties of Cu containing DLC films produced by PECVD process." Journal of Physics and Chemistry of Solids 73, no. 2 (2012): 308-316. https://doi.org/10.1016/j.jpcs.2011.10.019

  119. Domínguez-Meister, Santiago, T. Cristina Rojas, J. E. Frías, and Juan Carlos Sánchez-López. "Silver effect on the tribological and antibacterial properties of aC: Ag coatings." Tribology International 140 (2019): 105837. https://doi.org/10.1016/j.triboint.2019.06.030

  120. Endrino JL, Escobar Galindo R, Zhang H-S, Allen M, Gago R, Espinosa A, Anders A (2008) Structure and properties of silver-containing aC (H) films deposited by plasma immersion ion implantation. Surf Coat Technol 202(15):3675–3682. https://doi.org/10.1016/j.surfcoat.2008.01.011

    Article  CAS  Google Scholar 

  121. Patnaik, Lokeswar, Saikat Ranjan Maity, and Sunil Kumar. “Effect of lubricated sliding wear against CFRPEEK on the nanomechanical properties of Ag alloyed Cr/DLC thin film.” Journal of the Mechanical Behavior of Biomedical Materials 118 (2021): 104478. https://doi.org/10.1016/j.jmbbm.2021.104478

  122. Ren DW, Zhao Q, Bendavid A (2013) Anti-bacterial property of Si and F doped diamond-like carbon coatings. Surf Coat Technol 226:1–6. https://doi.org/10.1016/j.surfcoat.2013.03.025

    Article  CAS  Google Scholar 

  123. Zhao Q, Liu Y, Wang C, Wang S (2007) Evaluation of bacterial adhesion on Si-doped diamond-like carbon films. Appl Surf Sci 253(17):7254–7259. https://doi.org/10.1016/j.apsusc.2007.03.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Central Research Facility, Indian Institute of Technology Kharagpur (West Bengal, India), Central Instruments Facility, Indian Institute of Technology Guwahati (Assam, India), Centre for Nanoscience and Nanotechnology, Sathyabama University (Tamil Nadu, India) and Ingenious Tools & Design Solution Pvt. Ltd., Ghaziabad (Uttar Pradesh, India) for providing necessary infrastructures to conduct the experimental work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Lokeswar Patnaik: Conceptualization, Experimentation, Data analysis, Writing-original draft and Writing-review & editing; Saikat Ranjan Maity: Visualization, Data curation, Fund acquisition; Sunil Kumar: Resources and Writing-review & editing.

Corresponding author

Correspondence to Lokeswar Patnaik.

Ethics declarations

Ethics Approval

The data of our submission requires ethics approval and compliance with ethical standards.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Informed Consent

All authors and associated personnel are aware of and agree to the content of this submission.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, L., Maity, S.R. & Kumar, S. Comparative study on the structural make-up and mechanical behavior of silicon and silver doped amorphous carbon films. Silicon 14, 9617–9634 (2022). https://doi.org/10.1007/s12633-021-01607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01607-1

Keywords

Navigation