Skip to main content
Log in

Photocatalytic activity of polyaniline-TiO2 nanocomposites

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The characteristics of the UV illumination-assisted degradation of Malachite green (MG) on highly active nanostructured-anatase TiO2, bulk Polyaniline (PAni), PAni nanoparticles and PAni-TiO2 nanocomposites have been studied. Dodecylbenzene sulphonic acid doped PAni-TiO2 nanocomposites were synthesized by a water-assisted self-assembly method. Samples were characterized using transmission electron microscopy, X-ray diffraction studies, Fourier Transform Infra red spectroscopy and photoluminescence studies. Photoluminescence intensity of TiO2 nanoparticles was found to decrease with the increase of PAni in the nanocomposite which can be attributed to the reduction of electron-hole pair recombination at the interface of PAni and TiO2 due to electron transfer from TiO2 to PAni. Exposure to UV light brought about the photocatalytic oxidation of MG in contact with bulk PAni, PAni and TiO2 nanoparticles, and PAni-TiO2 nanocomposites. The decrease in absorbance was measured, and its kinetics was analyzed using the Langmuir-Hinshelwood kinetic model. PAni-TiO2 nanocomposites exhibit higher photocatalytic activity than pure TiO2 nanoparticles, bulk PAni and PAni nanoparticles under the same degradation condition for MG. The enhanced photocatalytic activity of nanocomposites is attributed to the electron transfer from TiO2 to PAni resulting in enhancing the oxidative property of the TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S Min, F Wang and Y Han J. Mater Sci. 42 9966 (2007)

    Article  ADS  Google Scholar 

  2. C C Chen, C S Lu, Y C Chung and J L Jan, J. Hazardous Materials 141 520 (2007)

    Article  Google Scholar 

  3. H Kominami, H Kumamoto, Y Kera and B Ohtan J. Photochem Photobiol A160 99 (2003)

    Article  Google Scholar 

  4. A Dodd, A McKinley, M Saunders and T Tsuzuki Nanotechnology 17 692 (2006)

    Article  ADS  Google Scholar 

  5. C Karunakaran and S Senthilvelan J. Molecular Catalysis A: Chemical 233(1–2) 1 (2005)

    Article  Google Scholar 

  6. P Bansal, N Bhullar and D Sud Desalination and Water Treatment 12 108 (2009)

    Article  Google Scholar 

  7. P Mayo, K Muthuramu and W K Wong Catalysis Letts. 10(1–2) 71 (1991)

    Article  Google Scholar 

  8. S Kakuta and T Abe J Mater. Sci. 44 2890 (2009)

    Article  ADS  Google Scholar 

  9. A Fujishima and K Honda Nature 238 37 (1972)

    Article  ADS  Google Scholar 

  10. W C Jiang and Q Q Wang J. Environ Sci. 15(6) 1 (1994)

    MATH  Google Scholar 

  11. M Y Zhao and J F Luo Environ. Prot. Chem. Ind. 13(2) 115 (1993)

    MathSciNet  Google Scholar 

  12. S F Chen, M Y Zhao and Y W Tao J. Environ. Sci. 16(5) 61 (1995)

    Google Scholar 

  13. S Banerjee, J Gopal, P Muraleedharan and A K Tyagi Curr. Sci. 90 1378 (2006)

    Google Scholar 

  14. E Y Kim, C M Whang, W I Lee and Y H Kim J Electroceramics 17 899 (2006)

    Article  Google Scholar 

  15. H Tada, A Hattori, Y Tokihisa, K Imai, N Tohge and S Ito J. Phys. Chem. B104(19) 4585 (2000)

    Google Scholar 

  16. S K Asl, K Sadrnezhaad and M Kianpoorrad Adv. Mater. Res. 55–57 577 (2008)

    Article  Google Scholar 

  17. Y Bessekhouad, N Chaoui, M Trzpit, N Ghazzal, D Robert and J V Weber J. Photochem Photobiol A183(1–2) 218 (2006)

    Article  Google Scholar 

  18. A J Heeger J. Phys. Chem. B105 8475 (2001)

    Google Scholar 

  19. D Chowdhury, A Paul and A Chattopadhyay Langmuir 21 4123 (2005)

    Article  Google Scholar 

  20. M Nandi, R Gangopadhyay and A Bhaumik Microporous and Mesoporous Materials 109(1–3) 239 (2008)

    Article  Google Scholar 

  21. P Peralta-Zamora, S de Moraes Gomes, J Reyes and N Duran Polymer Bulletin 37(4) 531 (1996)

    Article  Google Scholar 

  22. I Konstantinou and T Albanis Applied Catalysis B: Environmental 49 1 (2004)

    Article  Google Scholar 

  23. J P Pouget, M E Jozefowicz, A J Epstein, X Tang and A G MacDiarmid Macromolecules 24 779 (1991)

    Article  ADS  Google Scholar 

  24. Th H de Keijer, J I Langford, E J Mittemeijer and A B P Vogels J. Appl. Cryst. 15 3084 (1982)

    Google Scholar 

  25. M X Wan, M Li, J C Li and Z X Liu J. Appl. Polym. Sci. 53 131 (1994)

    Article  Google Scholar 

  26. L J Zhang and M X Wan Thin Solid Films 477 24 (2005)

    Article  ADS  Google Scholar 

  27. J W Choi, M G Han, S Y Kim, S G Oh and S S Im Synth. Met. 141(3) 293 (2004)

    Article  Google Scholar 

  28. X W Li, W Chen, C Q Bian, J B He, N Xu and G Xue Appl. Surf. Sci. 217(1) 16 (2003)

    Article  ADS  Google Scholar 

  29. S F S Draman, R Daik, and A Musa Intl. J. Chemical Biomolecular Engineering 2(3) 112 (2009)

    Google Scholar 

  30. L J Zhang and M X Wan J. Phys. Chem. B107(28) 6748 (2003)

    Google Scholar 

  31. N Serpone, P Maruthamuthu, P Pichat, E Pelizzetti and H Hidaka J. Photochem Photobiol A85 247 (1995)

    Article  Google Scholar 

  32. M Saquib and M Muneer Dyes Pigment 56 37 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmah, S., Kumar, A. Photocatalytic activity of polyaniline-TiO2 nanocomposites. Indian J Phys 85, 713–726 (2011). https://doi.org/10.1007/s12648-011-0071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0071-1

Keywords

Navigation