Skip to main content

Advertisement

Log in

Temperature and frequency dependent conductivity of lithium doped bismuth zinc vanadate semiconducting glassy system

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The ac conductivity of bismuth zinc vanadate glasses of compositions x Li2O (100 − x) (50V2O5·20 Bi2O3·30 ZnO); x = 0, 2, 4, 6, and 8 has been studied in the frequency range 10−1 Hzb–2 MHz and in temperature range 313–533 K. The temperature and frequency dependent conductivity is found to obey Almond–West universal power law for all the studied lithium doped bismuth zinc vanadate glassy systems. Various parameters such as dc conductivity (σ dc ), crossover frequency (ω H ) and frequency exponent (s) have been estimated by fitting the experimental data of ac conductivity to Almond–West universal power law. It has been observed that the ac conductivity of bismuth zinc vanadate glass system decreases with the increase in Li2O content. The ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models. The ac conduction seems to take place via tunneling of overlapping large polarons in all the compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N F Mott J. Non-Cryst. Solids 1 1 (1968)

    Article  ADS  Google Scholar 

  2. I G Austin and N F Mott Adv. Phys. 18 41 (1969)

    Article  ADS  Google Scholar 

  3. L Murawski, C H Chung and J D Mackenzie J. Non-Cryst. Solids 32 91 (1979)

    Article  ADS  Google Scholar 

  4. A Ghosh S Bhattacharya and A Ghosh J. Phys. Condens. Matter 21 145802 (2009)

    Article  ADS  Google Scholar 

  5. A Ghosh, S Bhattacharya, D P Bhattacharya and A Ghosh J. Phys. Condens. Matter 20 035203 (2008)

    Article  ADS  Google Scholar 

  6. F Abdel-Wahab, M S Aziz, A G Mostafa and E M Ahmed Mater. Sci. Eng. B 134 1 (2006)

    Article  Google Scholar 

  7. S Sen and A Ghosh J. Phys. Condens. Matter 13 1973 (2001)

    Article  ADS  Google Scholar 

  8. A Ghosh Phys. Rev. B 42 5665 (1990)

    Article  ADS  Google Scholar 

  9. M Sural and A Ghosh Solid State Ion. 130 259 (2000)

  10. A Ghosh J. Appl. Phys. 64 2652 (1988)

    Article  ADS  Google Scholar 

  11. J Livage, J P Jollivet and E Tronc J. Non-Cryst. Solids 121 35 (1990)

    Article  ADS  Google Scholar 

  12. Y Sakuri and J Yamaki J. Electrochem. Soc. 132 512 (1985)

    Article  Google Scholar 

  13. B Peng, Z Fan, X Qui, L Jaing, H D Ford and W Huang Adv. Mater. 17 857 (2005)

    Article  Google Scholar 

  14. L Murawski and R J Barczynski Solid State Ionics 176 2145 (2005)

    Article  Google Scholar 

  15. R J Barczynski and L Murawski Mater. Sci. Poland 24 221 (2006)

    Google Scholar 

  16. J Fu J. Mater. Sci. Lett. 16 1433 (1997)

    Article  Google Scholar 

  17. A Pan and A Ghosh Phys. Rev. B 62 3190 (2000)

    Article  ADS  Google Scholar 

  18. A Dutta and A Ghosh Phys. Rev. B 72 224203 (2005)

    Article  ADS  Google Scholar 

  19. A Dutta and A Ghosh J. Non Cryst. Solids 351 203 (2005)

    Article  ADS  Google Scholar 

  20. S Bale and S Rahman Mater. Res. Bull. 47 1153 (2012)

    Article  Google Scholar 

  21. R Punia, R S Kundu, J Hooda, S Dhankar, S Dahiya and N Kishore J. Appl. Phys. 110 033527 (2011)

    Article  ADS  Google Scholar 

  22. R Punia, R S Kundu, M Dult, S Murugavel and N Kishore J. Appl. Phys. 112 083701 (2012)

    Article  ADS  Google Scholar 

  23. R Punia, R S Kundu, S Murugavel and N Kishore J. Appl. Phys. 112 113716 (2012)

    Article  ADS  Google Scholar 

  24. A K Jonscher Dielectric Relaxation in Solids (London: Chelsea Dielectrics Press) (1983)

    Google Scholar 

  25. S Choudhary and R J Sengwa Indian J. Phys. 85 1591 (2011)

  26. D P Almond and A R West Nature 306 456 (1983)

    Article  ADS  Google Scholar 

  27. D P Almond, G K Duncan and A R West Solid State Ionics 8 159 (1983)

    Article  Google Scholar 

  28. H Jain and J N Mundy J. Non-Cryst. Solids 91 315 (1987)

    Article  ADS  Google Scholar 

  29. S R Elliot Phil. Mag. 36 1291 (1977)

    Article  ADS  Google Scholar 

  30. S R Elliot Phil. Mag. B 37 553 (1978)

    Article  ADS  Google Scholar 

  31. S R Elliot Adv. Phys. 36 135 (1987)

    Article  ADS  Google Scholar 

  32. N F Mott and E A Davis Electronic Processes in Non-Crystalline Materials (Oxford: Oxford University Press) (1979)

    Google Scholar 

  33. A R Long Adv. Phys. 31 553 (1982)

    Article  ADS  Google Scholar 

  34. S Capaccioli, M Lucchesi, P A Rolla and G Ruggeri J. Phys. Condens. Matter 10 5595 (1998)

    Article  ADS  Google Scholar 

  35. M P J van Staveren, H B Brom and L J de Jongh Phys. Rep. 208 1 (1991)

    Article  ADS  Google Scholar 

  36. L Murawski Phil. Mag. B 50 69 (1984)

    Article  ADS  Google Scholar 

  37. A Ghosh J. Appl. Phys. 66 2425 (1989)

    Article  ADS  Google Scholar 

  38. A Ghosh Phys. Rev. B 42 1388 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to UGC (SAP), New Delhi and DST (FIST), New Delhi for financial assistance in the form of grants at Department of Physics, M.D. University Rohtak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Punia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, S., Punia, R., Murugavel, S. et al. Temperature and frequency dependent conductivity of lithium doped bismuth zinc vanadate semiconducting glassy system. Indian J Phys 88, 1169–1173 (2014). https://doi.org/10.1007/s12648-014-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0557-8

Keywords

PACS Nos.

Navigation