Skip to main content
Log in

Facile one step synthesis of novel TiO2 nanocoral by sol–gel method using Aloe vera plant extract

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Titanium oxide (TiO2) nanoparticles (NPs) were synthesized by sol gel method using Aloe vera plant extract as a biological capping agent and a cauliflower-nanocoral morphology was observed in this technique. The assynthesized TiO2 nanopowder was calcined at a range of temperatures (300–600 °C) for 1 h. The influence of A. vera plant extract on the thermal, structural and morphological properties of TiO2 nanopowder was evaluated. Thermogravimetric analysis/differential thermal analysis was employed to study the thermal properties of the assynthesized TiO2 nanopowder. The crystallinity, phase transformation and the crystallite size of the calcined samples were studied by X-ray diffraction technique. XRD result confirmed the presence of TiO2 with anatase phase. FT Raman spectra showed the Raman active modes pertaining to the TiO2 anatase phase and Raman band shift was also observed with respect to particle size variation. The different functional group vibrations of as dried pure A. vera plant extract were compared with the mixture of TiO2 and A. vera plant extract by FT-IR analysis. The scanning electron microscopy images apparently showed the formation of spherical shaped NPs and also it demonstrated the effect of A. vera plant extract on the reduction of particles size. The surface area of the TiO2 NPs was measured through Brunauer–Emmett–Teller analysis. Transmission electron microscopy images ascertained that the spherical shaped TiO2 NPs were formed with cauliflower-nanocoral morphology decorated with nanopolyps with the size range between 15 and 30 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D R Lide Handbook of Chemistry and Physics 71st edn. (Boca Raton: F1 CRC) (1991)

    Google Scholar 

  2. W Q Wu, Y F Xu, C Y Su and DB Kuang Energy Environ. Sci. 7 644 (2014)

    Google Scholar 

  3. W Q Wu, Y F Xu, H S Rao, H L Feng, C Y Su and DB Kuang Angew. Chem. 19 4816 (2014)

    Google Scholar 

  4. W Q Wu, B X Lei, H S Rao, Y F Xu, Y F Wang, C Y Su and D B Kuang Sci. Rep. 3 1352 (2013)

    Google Scholar 

  5. J N Hart, D Menzies, Y B Cheng, G P Simon and L Spiccia J SolGel Sci. Technol. 40 45 (2006)

    Article  Google Scholar 

  6. B Oregan and M A Gratzel Nature 353 737 (1991)

    Article  ADS  Google Scholar 

  7. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)

    Article  ADS  Google Scholar 

  8. A Fujishima and K Honda Nature 238 37 (1972)

    Article  ADS  Google Scholar 

  9. M R Vaezi, S Khoby Shendy and T Ebadzadeh Indian J. Phys. 86 9 (2012)

    Google Scholar 

  10. S Berger, A Ghicov, Y C Nah and P Schmuki Langmuir 25 4841 (2009)

    Article  Google Scholar 

  11. G Fu, P S Vary and C T Lin J. Phys. Chem. B 109 8889 (2005)

    Article  Google Scholar 

  12. L C Gerhardt, G M R Jell and A R Boccaccini J. Mater. Sci. Mater. M 18 1287 (2007)

    Article  Google Scholar 

  13. H Y Chen, T L Zhang, J Fan, D B Kuang and C Y Su Appl. Mater. Interfaces. 5 9205 (2013)

    Article  Google Scholar 

  14. G Guo, B Yu, P Yu and X Chen Talanta 79 570 (2009)

    Google Scholar 

  15. J Y Liao, B X Lei, H Y Chen, D B Kuang and C Y Su Energy Environ. Sci. 5 5750 (2012)

    Google Scholar 

  16. Z Wang, B Huang, Y Dai, X Zhang, X Qin, Z Li, Z Zheng, H Cheng and L Guo Cryst. Eng. Comm. 14 4578 (2012)

    Article  Google Scholar 

  17. K Eshun and Q He Crit. Rev. Food Sci. Nutr. 44 91 (2004)

    Article  Google Scholar 

  18. M D Boudreau and F A Beland J. Environ. Sci. Health C 24 103 (2006)

    Article  Google Scholar 

  19. J H Hamman Molecules 13 1599 (2008)

    Article  Google Scholar 

  20. S P Chandran, M Chandhary, R Pasricha, A Ahmad and M Sastry Biotechnol. Prog. 22 577 (2006)

    Google Scholar 

  21. Y Zhang, D Yang, Y Kong, X Wang, O Pandoli and G Gao Nano Biomed. Eng. 2 252 (2010)

    Google Scholar 

  22. G Sangeetha, S Rajeshwari and R Venckatesh Mater. Res. Bullet. 46 2560 (2011)

    Article  Google Scholar 

  23. G Sangeetha, S Rajeshwari and R Venckatesh Prog. Nat. Sci. 22 693 (2012)

    Google Scholar 

  24. G Sangeetha, S Rajeshwari and R Venckatesh Spectrochim. Acta A 97 1140 (2012)

    Article  Google Scholar 

  25. P Laokul, V Amornkitbamrung, S Seraphin and S Maensiri Curr. Appl. Phys. 11 101 (2011)

    ADS  Google Scholar 

  26. J Klinkaewnarong, E Swatsitang, C Masingboon, S Seraphin and S Maensiri Curr. Appl. Phys. 10 521 (2010)

    ADS  Google Scholar 

  27. S Maensiri, P Laokul, J Klinkaewnarong, S Phokha, V Promarak and S Seraphin J Optoelectron. Adv. Mater. 10 161 (2008)

    Google Scholar 

  28. K S Venkatesh, N S Palani, S R Krishnamoorthi, V Thirumal and R Ilangovan AIP Conf. Proc. 1536 93 (2013)

    Google Scholar 

  29. S S Mali, C A Betty, P N Bhosale and P S Patil Electrochim. Acta 59 113 (2012)

    Google Scholar 

  30. R A Caruso, M Giersig, F Willig and M Antonietti Langmuir 14 6333 (1998)

    Article  Google Scholar 

  31. A Golubovic, M Scepanovic, A Kremenovic, S Askrabic, V Berec, Z Dohcevic-Mitrovic and Z V Popovic J. Sol Gel Sci. Technol. 49 311 (2009)

    Google Scholar 

  32. M Niederberger Acc. Chem. Res. 40 793 (2007)

    Article  Google Scholar 

  33. K Porkodi and S D Arokiasamy Mater. Charact. 58 495 (2007)

    Article  Google Scholar 

  34. T Ohsaka, F Izumi and Y Fujiki J. Raman Spectrosc. 7 321 (1978)

    Article  ADS  Google Scholar 

  35. M Hudlikar, S Joglekar, M Dhaygude and K Kodam Mater. Lett. 75 196 (2012)

    Google Scholar 

  36. S S Shankar, A Ahmad and M Sastry Biotechnol. Prog. 19 1627 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially assisted by University Grants Commission through the scheme of UGC Major Research Project [No. F. 40-74/2011 (SR)] and highly acknowledged. Also, the authors thank School of Physics, Alagappa University, Karaikudi for extending XRD facility and DST PURSE funded HRSEM instrumental facility extended by Department of Industrial Chemistry, Alagappa university, Karaikudi and Indian Institute of Technology (IIT Madras—SAIF) Chennai for extending the FT Raman instrument facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ilangovan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, K.S., Krishnamoorthi, S.R., Palani, N.S. et al. Facile one step synthesis of novel TiO2 nanocoral by sol–gel method using Aloe vera plant extract. Indian J Phys 89, 445–452 (2015). https://doi.org/10.1007/s12648-014-0601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0601-8

Keywords

PACS Nos.

Navigation