Skip to main content
Log in

Structural and dielectric properties of Na2Pb2Nd2W2Ti4V4O30 ferroelectric ceramics

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The polycrystalline ceramic of Na2Pb2Nd2W2Ti4V4O30 was prepared by a conventional moderate-temperature (~700 °C) mixed-oxide method. Calcination and sintering temperatures were determined from differential thermal analysis/thermogravimetric analysis data. The formation of a single-phase compound was confirmed from room-temperature X-ray diffraction analysis. The morphology of the sintered sample recorded by scanning electron microscope exhibited a uniform grain distribution. The existence of ferroelectricity in the material was confirmed from the nature of variation in dielectric constant, tangent loss, and polarization with temperature and frequency. The variation of AC and DC conductivities with temperature determined the nature of charge carrier in the sample, and frequency dependence of AC conductivity obeyed Jonscher’s universal power law at higher-frequency but slightly deviated in low-frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J Valasek Phys. Rev. 15 537 (1920)

    Google Scholar 

  2. B Wull and L M Goldmann C.R. Acad. Sci. USSR 46 139 (1945)

    Google Scholar 

  3. M E Lines and A M Glass Principles and Applications of Ferroelectrics and Related Materials, 1st edn. (Oxford: Oxford University Press) (1977)

    Google Scholar 

  4. B Tareev Physics of Dielectric Materials, 1st edn. (Moscow: Mir) (1975)

    Google Scholar 

  5. I V Sinyakov, V V Gene and A Ye Kreicherek Sov. Phys. Solid State 21 709 (1979)

    Google Scholar 

  6. W Cochran Adv. Phys. 9 387 (1960)

    Article  ADS  Google Scholar 

  7. R H Lyddane, R C Sachs and E Teller Phys. Rev. 59 673 (1941)

    Article  ADS  MATH  Google Scholar 

  8. F W Aiger Modern Oxide Materials-Preparation, Properties and Device Applications, 1st edn. (London: Academic Press) (1972)

    Google Scholar 

  9. G Goodman J. Am. Ceram. Soc. 36 368 (1953)

    Article  Google Scholar 

  10. M H Francombe and B Lewis Acta Crystallogr. 11 696 (1958)

    Article  Google Scholar 

  11. G A Smolenskii and A I Agranovskaya Dokl. Akad. Nauk. SSSR. 97 237 (1954)

    Google Scholar 

  12. A M Glass Appl. Phys. Lett. 13 147 (1968)

    Article  ADS  Google Scholar 

  13. S Sakamoto and T Yazaki Appl. Phys. Lett. 22 429 (1973)

    Article  ADS  Google Scholar 

  14. J J Rubin, L G Van Uitert and H J Levinstein J. Cryst. Growth 1 315 (1967)

    Article  ADS  Google Scholar 

  15. L G Van Uitert, J J Rubin, W H Grodkiewicz and W A Bonner Mater. Res. Bull. 4 63 (1969)

    Article  Google Scholar 

  16. I A Santos, V L Arantes, D Garcia and J A Eiras Mater. Res. (Sao Carlos, Brazil) 5 13 (2002)

    Article  Google Scholar 

  17. K Chandramouli, G S Reddy, P V Acharya and A Bhanumathi Ferroelectrics 332 71 (2006)

    Article  Google Scholar 

  18. K Sambasiva Rao and N V Nath Ferroelectrics 325 15 (2005)

    Article  Google Scholar 

  19. G Burns, D F O’Kane, E A Giess, and B A Scott Solid State Commun. 6 223 (1968)

    Article  ADS  Google Scholar 

  20. I G Ismailzade Kristallografiya 8 351 (1963)

    Google Scholar 

  21. Z Lu, J P Bonnet, J Ravez and P Hagenmuller J. Sold State Chem. 105 70 (1993)

    Article  ADS  Google Scholar 

  22. R R Neurgaonkar, J R Oliver, W K Cory, and L E Cross Mater. Res. Bull. 18 735 (1983)

    Article  Google Scholar 

  23. P P Rao, S K Ghosh and P Koshy J. Mater. Sci. Mater. Electron. 12 729 (2001)

    Article  Google Scholar 

  24. X H Zheng and X M Chen J. Mater. Res. 17 1664 (2002)

    Article  ADS  Google Scholar 

  25. P V Bijumon, V Kohli, O Prakash, M R Varma and M T Sebastian Mater. Sci. Engg. B 113 13 (2004)

    Article  Google Scholar 

  26. H P Klug and L E Alexander X-ray Diffraction, 1st edn. (England: Wiley Chester) 966 (1974)

    Google Scholar 

  27. E Wu, POWD An interactive Powder diffraction data interpretation and indexing Program, Ver 2.1, School of Physical Science, (Finders University of South Australia, Bedford Park, S.A. 5042, Australia)

  28. P R Das, R N P Choudhary and B K Samantray Mater. Chem. Phys. 101 228 (2007)

    Article  Google Scholar 

  29. B D Cullity Elements of X-ray Diffraction, 2nd edn. (Reading, Massachusetts: Addison Wesley) (1978)

    Google Scholar 

  30. M Bouziane, M Taibi and A Boukhari Mater. Chem. Phys. 129 673 (2011)

    Article  Google Scholar 

  31. I V Kityk, M Makowska-Janusik, M D Fontana, M Aillerie and A Fahmi J. Appl. Phys. 90 5542 (2001)

    Article  ADS  Google Scholar 

  32. Z Dai and Y Akishige J. Phys. D Appl. Phys. 43 4454031 (2010)

    Article  Google Scholar 

  33. N Singh, A Agarwal, S Sanghi and P Singh J. Magn. Magn. Mater. 323 486 (2011)

    Article  ADS  Google Scholar 

  34. K Jawahar and R N P Choudhary Mater. Lett. 62 911 (2008)

    Article  Google Scholar 

  35. B N Parida, P R Das, R Padhee and R N P Choudhary J. Alloys Compd. 540 267 (2012)

    Article  Google Scholar 

  36. S M Pilgrim, A E Sutherland and S R Winzer J. Am. Ceram. Soc. 73 3122 (1990)

    Article  Google Scholar 

  37. L E Cross Ferroelectrics 76 241 (1987)

    Article  Google Scholar 

  38. C P Smyth Dielectric Behaviour and Structure, 1st edn. (New York: McGraw Hill) (1955)

    Google Scholar 

  39. A J Dekker Solid State Physics, 1st edn. (Englewood Cliffs, N.J: Prentice Hall) (1957)

    Google Scholar 

  40. E Choukri, Y Gagou, A Belboukhari, G Erramo, M-A Frémy and A Zegzouti et al. Superlattices Microstruct. 49 300 (2011)

    Article  ADS  Google Scholar 

  41. A K Jonscher Nature 267 673 (1977)

    Article  ADS  Google Scholar 

  42. A K Jonscher Dielectric Relaxation in Solids, 1st edn. (London: Chelesa Dielectric Press) (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.R., Parida, B.N., Padhee, R. et al. Structural and dielectric properties of Na2Pb2Nd2W2Ti4V4O30 ferroelectric ceramics. Indian J Phys 90, 155–162 (2016). https://doi.org/10.1007/s12648-015-0738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0738-0

Keywords

PACS Nos.

Navigation