Skip to main content
Log in

Aging effects on vertical graphene nanosheets and their thermal stability

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A C Ferrari, F Bonaccorso, V Fal’Ko, K S Novoselov, S Roche, P Bld et al Nanoscale 7 4598 (2015)

    Article  ADS  Google Scholar 

  2. S Mitra, S Banerjee, A Datta and D Chakravorty Indian J Phys 90 1019 (2016)

    Article  ADS  Google Scholar 

  3. B Ankamwar, P Das and U Sur Indian J Phys 90 391 (2016)

    Article  ADS  Google Scholar 

  4. J Chen, Z Bo and G Lu Vertically-Oriented Graphene (Springer) (2015)

  5. S Ghosh, S R Polaki, N Kumar, S Amirthapandian, M Kamruddin, K Ostrikov Beilstein J Nanotech 8 1658 (2017)

    Article  Google Scholar 

  6. H J Cho, H Kondo, K Ishikawa, M Sekine, M Hiramatsu and M Hori Carbon, 68 380 (2014)

    Article  Google Scholar 

  7. K K Mishra, S Ghosh, R R Thoguluva, S Amirthapandian and M Kamruddin J Phys Chem C 120 25092 (2016)

    Article  Google Scholar 

  8. N Suetin, S Evlashin, AV Egorov, K V Mironovich, S Dagesyan, L V Yashina, E A Gudilin and V Krivchenko Phys Chem Chem Phys 18 12344 (2016)

    Article  Google Scholar 

  9. S Ghosh, B Gupta, K Ganesan, A Das, M Kamruddin, S Dash and A K Tyagi Mater Today Proc 3 1686 (2016)

    Article  Google Scholar 

  10. S C Ray, N Soin, T Makgato, C Chuang, W Pong, S S Roy, S K Ghosh, A M Strydom and J McLaughlin Sci Rep 4 3862 (2014)

    Article  ADS  Google Scholar 

  11. G Sahoo, S Ghosh, S R Polaki, T Mathews and M Kamruddin, Nanotechnology 28 415702 (2017)

    Article  Google Scholar 

  12. S Ghosh, T Mathews, B Gupta, A Das, N G Krishna and M Kamruddin Nano-Struct Nano-Objects 10 42 (2017)

    Article  Google Scholar 

  13. B Shen, J Ding, X Yan, W Feng, J Li and Q Xue Appl Surf Sci 258 4523 (2012)

    Article  ADS  Google Scholar 

  14. Z Wang, H Ogata, S Morimoto, M Fujishige, K Takeuchi, Y Hashimoto and M Endo Carbon 68 360 (2014)

    Article  Google Scholar 

  15. S Ghosh, K Ganesan, S R Polaki, A K Sivadasan, M Kamruddin and A K Tyagi Adv Sci Eng Med 8 146 (2016)

    Article  Google Scholar 

  16. J Wu, Y Zhang, B Wang, F Yi, S Deng, N Xu and J Chen Nucl Instr Methods Phys Res Sec B 304 49 (2013)

    Article  ADS  Google Scholar 

  17. S Wang, J Wang, P Miraldo, M Zhu, R Outlaw, K Hou, X Zhao, B C Holloway, D Manos and T Tyler Appl Phys Lett 89 183103 (2006)

    Article  ADS  Google Scholar 

  18. T Jiao, D Wei, X Song, T Sun, J Yang, L Yu, Y Feng, W Sun, W Wei, H Shi, C Hu and C Du RSC Adv 6 10175 (2016)

    Article  Google Scholar 

  19. S Evlashin, S Svyakhovskiy, N Suetin, A Pilevsky, T Murzina, N Novikova, A Stepanov, A Egorov and A Rakhimov Carbon 70 111 (2014)

    Article  Google Scholar 

  20. S Vizireanu, G Dinescu, L C Nistor, M Baibarac, G Ruxanda, M Stancu and D Ciuparu Physica E Low Dimens Syst Nanostruct 4 759 (2013)

    Google Scholar 

  21. V Marascu, S Vizireanu, S Stoica, V Barna, A Lazeastoyanova and G Dinescu Romanian Rep Phys 68 1108 (2016)

    Google Scholar 

  22. S Ghosh, K Ganesan, S R Polaki, T Ravindran, N G Krishna, M Kamruddin and A Tyagi J Raman Spectrosc 45 642 (2014)

    Article  ADS  Google Scholar 

  23. S Ghosh, K Ganesan, S Polaki, T Mathews, S Dhara, M Kamruddin and A Tyagi Appl Surf Sci 349 576 (2015)

    Article  Google Scholar 

  24. AC Ferrari and DM Basko Nat Nanotechnol 8 235 (2013)

    Article  ADS  Google Scholar 

  25. L Malard, M Pimenta, G Dresselhaus and M Dresselhaus Phys Rep 473 51 (2009)

    Article  ADS  Google Scholar 

  26. A Eckmann, A Felten, A Mishchenko, L Britnell, R Krupke, K S Novoselov, C Casiraghi, Nano Lett 12 3925 (2012)

    Article  ADS  Google Scholar 

  27. S Ghosh, K Ganesan, S R Polaki, S Ilango, S Amirthapandian, S Dhara, M Kamruddin and AK Tyagi, RSC Adv 5 91922 (2015)

    Article  Google Scholar 

  28. G Karuppiah, S Ghosh, N G Krishna, S Ilango, M Kamruddin and A K Tyagi Phys Chem Chem Phys 18 22160 (2016)

    Article  Google Scholar 

  29. H Watanabe, H Kondo, M Hiramatsu, M Sekine, S Kumar, K Ostrikov and M Hori Plasma Process Polym 10 582–592 (2013).

    Article  Google Scholar 

  30. D Bom, R Andrews, D Jacques, J Anthony, B Chen, M S Meier and J P Selegue Nano Lett 2 615 (2002)

    Article  ADS  Google Scholar 

  31. L Zhou, Z Yang, J Yang, Y Wu and D Wei Chem Phys Lett 677 7–12 (2017)

    Article  ADS  Google Scholar 

  32. A Shahverdi and G Soucy J Therm Anal Calorim 110 1079 (2012)

    Article  Google Scholar 

  33. T D N Van, S Sufian, N Mansor and, N Yahya J Nanomater 2014 1 (2014)

    Google Scholar 

  34. J Bartelmess and S Giordani Beilstein J Nanotech 5 1980 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge S.K. Dhara for allowing to access Raman spectrometer and A.K. Tyagi for his kind support. We also thankful T.R. Devidas for his careful evaluation and suggestions. S.G. acknowledges Dept. of Atomic Energy, Govt. of India for his Postdoctoral Research Associateship.

Author information

Authors and Affiliations

Authors

Contributions

S.G. planned, performed the experiments, analyzed the data and wrote the manuscript. P.K.A. did the TGA experiment. N.G.K. performed XPS experiment. All authors discussed the results, commented on the manuscript and gave approval to the final version of the manuscript. S.R.P., P.K.A., N.G.K., and M.K. contributed to the revision of the manuscript.

Corresponding authors

Correspondence to S. Ghosh or S. R. Polaki.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Polaki, S.R., Ajikumar, P.K. et al. Aging effects on vertical graphene nanosheets and their thermal stability. Indian J Phys 92, 337–342 (2018). https://doi.org/10.1007/s12648-017-1113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1113-0

Keywords

PACS Nos.

Navigation