Skip to main content
Log in

AC conductivity and conduction mechanism study of rubidium gadolinium diphosphate compound

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The diphosphate RbGdP2O7 compound has been synthesized by the conventional solid-state reaction method and characterized by X-ray powder diffraction, Raman spectroscopy and impedance spectroscopy. The title compound crystallizes in the monoclinic system with P21/c space group. The AC electrical conductivity was measured in a frequency range from 200 Hz to 1 MHz and temperature range 480–580 K. Impedance plot revealed the presence of two contributions at different temperatures associated with grain and grain boundary. The obtained results were analyzed by fitting the experimental data to an equivalent circuit model based on the ZView software. The temperature dependence of these contributions is found to obey the Arrhenius law with activation energies 0.42 eV and 0.32 eV, respectively. The alternating current (AC) conductivity of grain contribution follows the universal Jonscher’s power law. The temperature dependency of frequency exponent ‘s’ shows that the correlated barrier hopping model (CBH) is the most responsible mechanism for AC conduction in the investigated compound. The theoretical fitting between the proposed model and the experimental data showed good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B Louati, F Hlel and K Guidara J. Alloys Compd. 486 299 (2009)

    Article  Google Scholar 

  2. M Megdiche, H Mahamoud, B Louati, F Hlel and K Guidara Ionics 16 655 (2010)

    Article  Google Scholar 

  3. B Louati, M Gargouri, K Guidara and T Mhiri J. Phys. Chem. Solids 66 762 (2004)

    Article  ADS  Google Scholar 

  4. Y Ben Taher, A Oueslati and M Gargouri J. Alloys Compd. 668 206 (2016)

  5. R Ben Said, B Louati and K Guidara Ionics 20 703 (2014)

  6. N Dridi, A Boukhari, J M Réau, E Arbib and E M Holt Mater. Lett. 47 212 (2001)

    Article  Google Scholar 

  7. K Horchani-Naifer and M Férid Solid State Ion. 176 1949 (2005)

    Article  Google Scholar 

  8. H Mahamoud, B Louati, F Hlel and K Guidara J. Alloys Compd. 509 6083 (2011)

    Article  Google Scholar 

  9. V Biju and M A Khadar J. Mater. Sci. 36 5779 (2001)

    Article  ADS  Google Scholar 

  10. B Louati and K Guidara Ionics 17 633 (2011)

    Article  Google Scholar 

  11. S Nasri, M Megdiche and M Gargouri Physica B 451 120 (2014)

    Article  ADS  Google Scholar 

  12. A Daidouh, M L Veiga, C Pico and M Martinez-Ripoll Acta. Cryst. C 53 167 (1997)

    Article  Google Scholar 

  13. J L Yuan, J Wang, Z J Zhang, J T Zhao and G B Zhang Opt. Mater. 30 132 (2008)

    Google Scholar 

  14. B S Parajon-Costa, R C Mercader and E J Baran J. Phys. Chem. Solid 74 354 (2013)

    Article  ADS  Google Scholar 

  15. H Mahamoud, B Louati, F Hlel and K Guidara Bull. Mater. Sci. 34 1069 (2011)

    Article  Google Scholar 

  16. R Ben Said, B Louati and K Guidara Ionics 20 1071 (2014)

  17. A B Rhaiem, S Chouaib and K Guidara Ionics 16 455 (2010)

    Article  Google Scholar 

  18. E J Baran, R C Mercader, A Massaferro, E Kremer Spectrochim. Acta. Part A 60 1001 (2004)

    Article  ADS  Google Scholar 

  19. M Idrees, M Nadeem and M M Hassan J. Phys. D Appl. Phys. 44 155401 (2011)

    Article  Google Scholar 

  20. H Kchaou, A Ben Rhaiem, K Karoui and F Jomni Appl. Phys. A 122 82 (2016)

    Article  ADS  Google Scholar 

  21. Y Ben Taher, A Oueslati, N K Maaloul, K Khirouni and M Gargouri Appl. Phys. A 120 1537 (2015)

  22. M Ram J. Alloys Compd. 509 5688 (2011)

    Article  Google Scholar 

  23. M Sassi, A Oueslati and M Gargouri Appl. Phys. A 119 763 (2015)

    Article  ADS  Google Scholar 

  24. C R Mariappan, G Govindaraj, S Vinoth Rathan and G Vijaya Prakash J. Mater. Sci. Eng. B 121 2 (2005)

    Article  Google Scholar 

  25. M I Youssif, F Sh Mohamed and M S Aziz Mater. Chem. Phys. 83 250 (2004)

    Article  Google Scholar 

  26. S A El-Hakim, F A El-Wahab, A S Mohamed, and M F Kotkata. phys. stat. sol (a). 198, 128 (2003)

  27. A K Jonscher, Dielectric Relaxation in Solids (1983)

  28. W Li and R W Schwartz Appl. Phys. Lett. 89 242906 (2006)

    Article  ADS  Google Scholar 

  29. S Das, S Banerjee and T P Sinha J. Nanosci. Nanotechnol. Res. 1 1 (2017)

    Google Scholar 

  30. S Nasri, M Megdiche, K Guidara and M Gargouri Ionics 19 1921 (2013)

    Article  Google Scholar 

  31. S Hassairi, B Louati and K Guidara J. Alloys Compd. 715 397 (2017)

    Article  Google Scholar 

  32. S R Elliot Adv. Phys. 36 135 (1987)

    Article  ADS  Google Scholar 

  33. A Ghosh Phys. Rev. B 41 1479 (1990)

    Article  ADS  Google Scholar 

  34. R Punia, R S Kundu, M Dult, S Murugavel and N Kishore J. Appl. Phys. 112 083701 (2012)

    Article  ADS  Google Scholar 

  35. S Nasri, A Oueslati, I Chaabane and M Gargouri Ceram. Int. 42 14041 (2016)

    Article  Google Scholar 

  36. N Mehtaa, D Kumarb, S Kumarc and A Kumard Chalcogenide Lett. 2 103 (2005)

    Google Scholar 

  37. A Kahouli, A Sylvestre, F Jomni, B Yangui and J Legrand J. Phys. Chem. A 116 1051 (2012)

  38. S R Elliott Adv. Phys. 36 135 (1987)

    Article  ADS  Google Scholar 

  39. S Hajlaoui, I Chaabane and K Guidara RSC Adv. 6 91649 (2016)

    Article  Google Scholar 

  40. N F Mott, E A Davis, 2nd edn. Clarendon Press, Oxford (1979)

  41. R D Shannon Acta. Cryst. Sect. A 32 751 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Mathlouthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathlouthi, S., Oueslati, A. & Louati, B. AC conductivity and conduction mechanism study of rubidium gadolinium diphosphate compound. Indian J Phys 93, 603–610 (2019). https://doi.org/10.1007/s12648-018-1324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1324-z

Keywords

PACS Nos.

Navigation