Skip to main content
Log in

First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, elastic, electronic, magnetic and thermodynamic properties of Co2TaGa full-Heusler alloy are investigated using density functional theory-based full-potential linearized augmented plane waves method. Our results present Co2TaGa full-Heusler in CuHg2Ti-type structure FM phase that is mechanically and dynamically stable at pressure. The negative formation energy of Co2TaGa is −1.516 eV that can be synthesized experimentally. The electronic properties of 3d transition metal-based full-Heusler compound Co2TaGa are calculated within Perdew–Burke–Ernzerhof generalized gradient approximation. Co2TaGa is predicted to be half-metallic ferrimagnet with an indirect band gap and 100% spin polarization. The calculated total magnetic moment is 2 μB, which is mainly determined by Co partial moment, and total spin magnetic moment is in conformity with Slater–Pauling rule Mt that gives a simple function of valence electrons number, Zt, formulated as Mt = Zt − 18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J Thoene, S Chadov, G Fecher, C Felser and J Kübler J. Phys. D Appl. Phys.42 084013 (2009)

    ADS  Google Scholar 

  2. R A de Groot et al Phys. Rev. Lett.50 2024 (1983)

    ADS  Google Scholar 

  3. F Semari et al Chin. J. Phys.56 567 (2018)

    Google Scholar 

  4. L Chioncel, M I Katsnelson, R A de Groot and A I Lichtenstein Phys. Rev. B68 144425 (2003)

    ADS  Google Scholar 

  5. I Galanakis, P H Dederichs and N Papanikolaou Phys. Rev. B66 174429 (2002)

    ADS  Google Scholar 

  6. I Galanakis, K Özdoǧan and E Şaşıoğlu Appl. Phys. Lett.103 142404 (2013)

    ADS  Google Scholar 

  7. I Galanakis, K Özdoǧan and E Şaşıoğlu J. Phys. Condens. Matter26 086003 (2014)

    ADS  Google Scholar 

  8. I Galanakis and E Şaşıoğlu Appl. Phys. Lett. 99 052509 (2011)

    ADS  Google Scholar 

  9. I Galanakis, K Özdoǧan, E Şaşıoğlu and S Blugel J. Appl. Phys.115 093908 (2014)

    ADS  Google Scholar 

  10. O. Amrich et al J. Supercond. Nov. Magn.31 241 (2018)

    Google Scholar 

  11. I Zutic, J Fabian and SD Sarma Rev. Mod. Phys.76 323 (2004)

    ADS  Google Scholar 

  12. P J Webster J. Phys. Chem. Solids32 1221 (1971)

    ADS  Google Scholar 

  13. J Kübler, A R Williams and C B Sommers Phys. Rev. B28 1745 (1983)

    ADS  Google Scholar 

  14. P J Brown, K U Neumann, P J Webster and K R A Ziebeck J. Phys. Condens. Matter12 8 (2000)

    Google Scholar 

  15. A Akriche, B Abidri, S Hiadsi, H Bouafia and B Sahli Intermetallics68 42 (2016)

    Google Scholar 

  16. J Li, Y Li, X Dai and X Xu J. Magn. Magn. Mater.321 365 (2009)

    ADS  Google Scholar 

  17. B Balke, S Wurmehl, G H Fecher, C Felser and J Kübler Sci. Technol. Adv. Mater.9 014102 (2008)

    Google Scholar 

  18. H C Kandpal, G H Fecher and C Felser J. Magn. Magn. Mater.310 1626 (2007)

    ADS  Google Scholar 

  19. H C Kandpal, G H Fecher and C Felser J. Phys. D Appl. Phys.40 1507 (2007)

    ADS  Google Scholar 

  20. P Blaha, K. Schwarz, G K H Madsen, D Hvasnicka and J Luitz WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology) (2001)

    Google Scholar 

  21. J C Slater Phys. Rev. B51 846 (1937)

    ADS  Google Scholar 

  22. E Sjosted, L Nordstrom and D J Singh Solid State Commun.114 15 (2000)

    ADS  Google Scholar 

  23. J P Perdew and Y Wang Phys. Rev. B45 13244 (1992)

    ADS  Google Scholar 

  24. J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett.77 3865 (1996)

    ADS  Google Scholar 

  25. F Tran and P Blaha Phys. Rev. Lett.102 226401 (2009)

    ADS  Google Scholar 

  26. B Fadila et al J. Magn. Magn Mater.448 208 (2018)

    ADS  Google Scholar 

  27. I E Yahiaoui, A Lazreg, Z Dridi, Y Al-Douri and B Bouhafs J. Supercond. Nov. Magn.30 421 (2017)

    Google Scholar 

  28. X J Zhang et al Intermetallics73 26 (2016)

    Google Scholar 

  29. D Bensaid et al J. Supercond. Nov. Magn.29 1843 (2016)

    Google Scholar 

  30. A Birsan Curr. Appl. Phys.14 1434 (2014)

    ADS  Google Scholar 

  31. M A Blanco and E Francis Comput. Phys. Commun. 158 57 (2004)

    ADS  Google Scholar 

  32. F Peng, H Z Fu and X L Cheng Physica B Condens. Matter.400 83 (2007)

    ADS  Google Scholar 

  33. F Peng, H Z Fu and X D Yang Solid State Commun. 145 91 (2008)

    ADS  Google Scholar 

  34. F Peng, H Z Fu and X D Yang Physica B Condens. Matter.403 2851 (2008)

    ADS  Google Scholar 

  35. S F Pugh Philos. Mag.45 823 (1954)

    Google Scholar 

  36. M Ameri et al Mol. Simul.40 1236 (2013)

    Google Scholar 

  37. M Ameri et al Mater. Sci. Semicond. Process.27 379 (2014)

    Google Scholar 

  38. F D Murnaghan Proc. Natl. Acad. Sci.USA30 244 (1944)

    ADS  Google Scholar 

  39. S Berri J. Sci. Adv. Mater. Devices1 286 (2016)

    Google Scholar 

  40. T Kanomata et al Phys. Rev. B82 144415 (2010)

    ADS  Google Scholar 

  41. A W Carbonari et al J Magn. Magn. Mater.163 313 (1996)

    ADS  Google Scholar 

  42. X T Wang et al Phys. Lett A378 1662 (2014)

    Google Scholar 

  43. X T Wang et al J. Magn. Magn. Mater.378 16 (2015)

    ADS  Google Scholar 

  44. M J Mehl Phys. Rev. B47 2493 (1993)

    ADS  Google Scholar 

  45. Thomas Charpin, Lab. Géométraux de l’IPGP (Paris, France)

  46. M Born Proc. Camb. Philos. Soc. 36 160 (1940)

    ADS  Google Scholar 

  47. M Born and K Huang Dynamical Theory of Crystal Lattice (Oxford: Oxford University Press) (1954)

    MATH  Google Scholar 

  48. S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci.45 823 (1954)

    Google Scholar 

  49. M J Mehl, B K Klein and D A Papaconstantopoulos Intermetallic Compounds Principle and Practice. Principles. I. (eds.) J H Westbrook and R L Fleischeir (Hoboken: Wiley) (1995)

    Google Scholar 

  50. W Voigt Lehrbush Der Kristallphysik (Leipzig: Taubner) (1928)

    Google Scholar 

  51. E Schreiber, O L Anderson and N Soga, Elastic Constants and Their Measurements (New York: McGraw-Hill) (1973)

    Google Scholar 

  52. H Fu, D Li, F Peng, T Gao and X Chang Comput. Mater. Sci. 44 774 (2008)

    Google Scholar 

  53. J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Res.31 1 (2001)

    ADS  Google Scholar 

  54. L Ai and X L Gao Compos. Struct.162 70 (2017)

    Google Scholar 

  55. D G Pettifor Mater Sci. Technol. 8 345 (1992)

    Google Scholar 

  56. C Mi Eur. J. Mech. A Solids65 59 (2017)

    ADS  MathSciNet  Google Scholar 

  57. D J Green An Introduction to the Mechanical Properties of Ceramics (Cambridge: Cambridge University Press) (1998)

    Google Scholar 

  58. P Wachter, M Filzmoser and J Rebiant Physica B.293 199 (2001)

    Google Scholar 

  59. W Voigt Semiconductors and Semimetals. Lehrbuch der Kristall-physik (Taubner: Leipzing) (1929)

    Google Scholar 

  60. E Schreiber, O L Anderson and N Soga Elastic Constants and Their Measurements (New York: Mc Graw-Hill) (1973)

    Google Scholar 

  61. S M Azar, B A Hamad and J M Khalifeh J. Magn. Magn. Mater. 324 1776 (2012)

    ADS  Google Scholar 

  62. A T Petit and P L Dulong Ann. Chim. Phys.10 395 (1819)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayad, M., Belkharroubi, F., Boufadi, F.Z. et al. First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. Indian J Phys 94, 767–777 (2020). https://doi.org/10.1007/s12648-019-01518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01518-3

Keywords

PACS No.

Navigation