Skip to main content
Log in

Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digestion of organic wastes is clearly encouraged by current regulations in Europe. In complement to the energy supply it represents, this biological treatment process also allows the recycling of organic matter and nutrients contained in biodegradable wastes. Indeed the digestion residue can be further promoted as soil improver or fertilizer. The sustainability of anaerobic digestion plants partly depends on the management of these digestion residues. Digestates present particular characteristics that can reduce their direct agricultural valorization and minimize by the way the benefit of such a biological treatment. Thus the first part of this two part paper aims at reviewing and discussing a wide range of biochemical, biological and physical indicators used to assess the agronomic quality of organic products and the feasibility of an aerobic treatment by composting. The definition of agronomic quality is very complex and no single parameter can be picked out to assess the quality of solid digestates coming from different sources. A relevant choice of these parameters will lead to state on digestates agricultural use, whether they can be directly used on soil after digestion or if they need a composting post-treatment before utilization. The second part of this two part paper will choose indicators to characterize several digestates in order to assess their future agricultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Parliament and Council: Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste. (2006)

  2. European Parliament and Council: Position of the European Parliament adopted at second reading on 17 June 2008 with a view to adoption of Directive 2008/…/EC of the European Parliament and of the Council on waste repealing certain Directives. (2008)

  3. Fricke, K., Santen, H., Wallmann, R., Huttner, A., Dichtl, N.: Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manage. 27(1), 30–43 (2007)

    Article  Google Scholar 

  4. Walker, L., Charles, W., Cord-Ruwisch, R.: Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour. Technol. 100(16), 3799–3807 (2009)

    Article  Google Scholar 

  5. Poggi-Varaldo, H.M., Trejo-Espino, J., Fernandez-Villagomez, G., Esparza-Garcia, F., Caffarel-Mendez, S., Rinderknecht-Seijas, N.: Quality of anaerobic compost from paper mill and municipal solid wastes for soil amendment. Water Sci. Technol. 40(11–12), 179–186 (1999)

    Google Scholar 

  6. Abdullahi, Y.A., Akunna, J.C., White, N.A., Hallett, P.D., Wheatley, R.: Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour. Technol. 99(18), 8631–8636 (2008)

    Article  Google Scholar 

  7. Salminen, E., Rintala, J., Harkonen, J., Kuitunen, M., Hogmander, H., Oikari, A.: Anaerobically digested poultry slaughterhouse wastes as fertiliser in agriculture. Bioresour. Technol. 78(1), 81–88 (2001)

    Article  Google Scholar 

  8. Meissl, K., Smidt, E.: High quality composts by means of cocomposting of residues from anaerobic digestion. Compost Sci. Util. 15(2), 78–83 (2007)

    Google Scholar 

  9. Kupper, T., Fuchs, J.: Compost et digestat en Suisse. Connaissance de l’environnement no 0743, p.124. Office fédéral de l’environnement, Berne (2007)

  10. Paavola, T., Rintala, J.: Effects of storage on characteristics and hygienic quality of digestates from four co-digestion concepts of manure and biowaste. Bioresour. Technol. 99(15), 7041–7050 (2008)

    Article  Google Scholar 

  11. Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81(5), 577–583 (2010)

    Article  Google Scholar 

  12. Gomez, X., Cuetos, M.J., Garcia, A.I., Moran, A.: Evaluation of digestate stability from anaerobic process by thermogravimetric analysis. Thermochim. Acta 426(1–2), 179–184 (2005)

    Article  Google Scholar 

  13. Gomez, X., Cuetos, M.J., Garcia, A.I., Moran, A.: An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J. Hazard. Mater. 149(1), 97–105 (2007)

    Article  Google Scholar 

  14. Drennan, M.F., Distefano, T.D.: Characterization of the curing process from high-solids anaerobic digestion. Bioresour. Technol. 101(2), 537–544 (2010)

    Article  Google Scholar 

  15. Evanylo, G., Sherony, C., Spargo, J., Starner, D., Brosius, M., Haering, K.: Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 127(1–2), 50–58 (2008)

    Article  Google Scholar 

  16. AFNOR: FD CR 13456 Amendements du sol et supports de culture—Etiquetage, spécifications et listes de produits (2001)

  17. Kirchmann, H., Witter, E.: Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour. Technol. 40(2), 137–142 (1992)

    Article  Google Scholar 

  18. Kirchmann, H., Bernal, M.P.: Organic waste treatment and C stabilization efficiency. Soil Biol. Biochem. 29(11–12), 1747–1753 (1997)

    Article  Google Scholar 

  19. Lashermes, G., Nicolardot, B., Parnaudeau, V., Thuries, L., Chaussod, R., Guillotin, M.L., Lineres, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., Houot, S.: Indicator of potential residual carbon in soils after exogenous organic matter application. Eur. J. Soil Sci. 60(2), 297–310 (2009)

    Article  Google Scholar 

  20. Van Soest, P.J., Wine, R.H.: Use of detergents in the analysis of fibrous feeds. IV—determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 50, 50–55 (1967)

    Google Scholar 

  21. Kayhanian, M.: Biodegradability of the organic fraction of municipal solid-waste in a high-solids Anaerobic digester. Waste Manage. Res. 13(2), 123–136 (1995)

    Google Scholar 

  22. Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53(8), 233–241 (2006)

    Article  Google Scholar 

  23. Hartmann, H., Ahring, B.K.: Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: An overview. Water Sci. Technol. 53(8), 7–22 (2006)

    Article  Google Scholar 

  24. Gunaseelan, V.N.: Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour. Technol. 98(6), 1270–1277 (2007)

    Article  Google Scholar 

  25. Eleazer, W.E., Odle, W.S., Wang, Y.S., Barlaz, M.A.: Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ. Sci. Technol. 31(3), 911–917 (1997)

    Article  Google Scholar 

  26. Tambone, F., Genevini, P., D’Imporzano, G., Adani, F.: Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 100(12), 3140–3142 (2009)

    Article  Google Scholar 

  27. Komilis, D.P., Ham, R.K.: The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Manage. 23(5), 419–423 (2003)

    Article  Google Scholar 

  28. AFNOR: XP U44-162 Amendements organiques et supports de culture—Fractionnement biochimique et estimation de la stabilité biologique—Méthode de caractérisation de la matière organique par solubilisations successives (2005)

  29. Hachicha, S., Sellami, F., Cegarra, J., Hachicha, R., Drira, N., Medhioub, K., Ammar, E.: Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter. J. Hazard. Mater. 162(1), 402–409 (2009)

    Article  Google Scholar 

  30. Campitelli, P., Ceppi, S.: Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma 144(1–2), 325–333 (2008)

    Article  Google Scholar 

  31. Diacono, M., Montemurro, F.: Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 30(2), 401–422 (2010)

    Article  Google Scholar 

  32. Tuomela, M., Vikman, M., Hatakka, A., Itavaara, M.: Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 72(2), 169–183 (2000)

    Article  Google Scholar 

  33. Albrecht, R.: Co-compostage de boues de station d’épuration et de déchets verts: Nouvelle méthodologie du suivi des transformations de la matière organique, p. 189. Université Paul Cézanne Aix-Marseille III (2007)

  34. Bernal, M.P., Paredes, C., Sanchez-Monedero, M.A., Cegarra, J.: Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63(1), 91–99 (1998)

    Article  Google Scholar 

  35. Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., Perez-Espinosa, A., Bernal, M.P., Moral, R.: Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 72(4), 551–557 (2008)

    Article  Google Scholar 

  36. Harada, Y., Inoko, A.: The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity. Soil Sci. Plant Nutr. 26(1), 127–134 (1980)

    Google Scholar 

  37. Novoa-Munoz, J.C., Simal-Gandara, J., Fernandez-Calvino, D., Lopez-Periago, E., Arias-Estevez, M.: Changes in soil properties and in the growth of Lolium multiflorum in an acid soil amended with a solid waste from wineries. Bioresour. Technol. 99(15), 6771–6779 (2008)

    Article  Google Scholar 

  38. Fialho, L.L., da Silva, W.T.L., Milori, D., Simoes, M.L., Martin-Neto, L.: Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresour. Technol. 101(6), 1927–1934 (2010)

    Article  Google Scholar 

  39. Siebert, S.: Quality requirements and quality assurance of digestion residuals in Germany. In: ECN/ORBIT Worshop The future for Anaerobic Digestion of Organic Waste in Europe. Nüremberg, Germany (2008)

  40. AFNOR: NF U44-051 Amendements organiques—Dénominations, spécifications et marquage. (2006)

  41. AFNOR: NF U44-095 Amendements organiques—Composts contenant des matières d’intérêt agronomique, issues du traitement des eaux. (2002)

  42. Mosquera-Losada, M.R., Munoz-Ferreiro, N., Rigueiro-Rodriguez, A.: Agronomic characterisation of different types of sewage sludge: Policy implications. Waste Manage. 30(3), 492–503 (2010)

    Article  Google Scholar 

  43. Hargreaves, J.C., Adl, M.S., Warman, P.R.: A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 123(1–3), 1–14 (2008)

    Article  Google Scholar 

  44. AFNOR: NF U42-001 Engrais—Dénominations et spécifications. (2009)

  45. Walter, I., Martinez, F., Cala, V.: Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ. Pollut. 139(3), 507–514 (2006)

    Article  Google Scholar 

  46. Kapanen, A., Itavaara, M.: Ecotoxicity tests for compost applications. Ecotox. Environ. Safe. 49(1), 1–16 (2001)

    Article  Google Scholar 

  47. AFNOR: FD CR 13455 Amendements du sol et supports de culture—Principes directeurs pour la sécurité des utilisateurs, de l’environnement et des plantes. (2001)

  48. BSI: PAS 110:2010 Specification for whole digestate, separated liquor and separated fibre derived from the anaerobic digestion of source-segregated biodegradable materials. (2010)

  49. CCME: PN 1340 Guidelines for Compost Quality. (2005)

  50. Tognetti, C., Mazzarino, M.J., Laos, F.: Improving the quality of municipal organic waste compost. Bioresour. Technol. 98(5), 1067–1076 (2007)

    Article  MATH  Google Scholar 

  51. Cossu, R., Raga, R.: Test methods for assessing the biological stability of biodegradable waste. Waste Manage. 28(2), 381–388 (2008)

    Article  Google Scholar 

  52. Fricke, K., Santen, H., Wallmann, R.: Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Manage. 25(8), 799–810 (2005)

    Article  Google Scholar 

  53. Ponsa, S., Gea, T., Alerm, L., Cerezo, J., Sanchez, A.: Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manage. 28(12), 2735–2742 (2008)

    Article  Google Scholar 

  54. Komilis, D.P., Tziouvaras, I.S.: A statistical analysis to assess the maturity and stability of six composts. Waste Manage. 29(5), 1504–1513 (2009)

    Article  Google Scholar 

  55. Baffi, C., Dell’Abate, M.T., Nassisi, A., Silva, S., Benedetti, A., Genevini, P.L., Adani, F.: Determination of biological stability in compost: A comparison of methodologies. Soil Biol. Biochem. 39(6), 1284–1293 (2007)

    Article  Google Scholar 

  56. Barrena Gomez, R., Vazquez Lima, F., Sanchez Ferrer, A.: The use of respiration indices in the composting process: A review. Waste Manag. Res. 24(1), 37–47 (2006)

    Article  Google Scholar 

  57. Brinton, W.F., Evans, E., Droffner, M.L., Brinton, R.B.: Standardized test for evaluation of compost self-heating. Biocycle 36(11), 64–69 (1995)

    Google Scholar 

  58. Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A.: Quality assessment of composts in the Greek market: The need for standards and quality assurance. J. Environ. Manage. 80(1), 58–65 (2006)

    Article  Google Scholar 

  59. Lossin, R.: Measurement of the Chemical Oxygen Demand of Compost. Compost Sci. 31–32 (1971)

  60. Mathur, S.P., Owen, G., Dinel, H., Schnitzer, M.: Determination of compost biomaturity. 1. Literature-review. Biol. Agric. Hortic. 10(2), 65–85 (1993)

    Google Scholar 

  61. Tiquia, S.M.: Microbiological parameters as indicators of compost maturity. J. Appl. Microbiol. 99(4), 816–828 (2005)

    Article  Google Scholar 

  62. Wu, L., Ma, L.Q., Martinez, G.A.: Comparison of methods for evaluating stability and maturity of biosolids compost. J. Environ. Qual. 29(2), 424–429 (2000)

    Article  Google Scholar 

  63. de Guardia, A., Tremier, A., Martinez, J.: Chapter 16—Indicators for determination of stability of composts and recycled organic wastes. In: Lens, P., Hamelers, B., Hoitink, H., Bidlingmaier, W. (eds.) Resource Recovery and Reuse in Organic Solid Waste Management, pp. 338–376. IWA Publishing, London (2004)

    Google Scholar 

  64. Tremier, A., de Guardia, A., Mallard, P.: Indicateurs de stabilisation de la matière organique au cours du compostage et indicateurs de stabilité des composts: Analyse critique et perspectives d’usage. TSM 10, 105–129 (2007)

    Google Scholar 

  65. Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A.: Microbial characterization during composting of municipal solid waste. Bioresour. Technol. 80(3), 217–225 (2001)

    Article  Google Scholar 

  66. Moletta, R.: Le traitement des déchets. Paris, France (2009)

  67. Cote, C., Masse, D.I., Quessy, S.: Reduction of indicator and pathogenic microorganisms by psychrophilic anaerobic digestion in swine slurries. Bioresour. Technol. 97(4), 686–691 (2006)

    Article  Google Scholar 

  68. Bendixen, H.J.: Safeguards against pathogens in danish biogas plants. Water Sci. Technol. 30(12), 171–180 (1994)

    Google Scholar 

  69. Sahlstrom, L.: A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 87(2), 161–166 (2003)

    Article  Google Scholar 

  70. Forster-Carneiro, T., Perez, M., Romero, L.I.: Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour. Technol. 99(15), 6763–6770 (2008)

    Article  Google Scholar 

  71. Igoni, A.H., Ayotamuno, M.J., Eze, C.L., Ogaji, S.O.T., Probert, S.D.: Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl. Energy 85(6), 430–438 (2008)

    Article  Google Scholar 

  72. Barrena, R., d’Imporzano, G., Ponsa, S., Gea, T., Artola, A., Vazquez, F., Sanchez, A., Adani, F.: In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste. J. Hazard. Mater. 162(2–3), 1065–1072 (2009)

    Article  Google Scholar 

  73. Ekama, G.A., Sotemann, S.W., Wentzel, M.C.: Biodegradability of activated sludge organics under anaerobic conditions. Water Res. 41(1), 244–252 (2007)

    Article  Google Scholar 

  74. Jones, R., Parker, W., Khan, Z., Murthy, S., Rupke, M.: Characterization of sludges for predicting anaerobic digester performance. Water Sci. Technol. 57(5), 721–726 (2008)

    Article  Google Scholar 

  75. Vikman, M., Karjomaa, S., Kapanen, A., Wallenius, K., Itavaara, M.: The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Appl. Microbiol. Biotechnol. 59(4–5), 591–598 (2002)

    Google Scholar 

  76. Francou, C., Le Villio-Poitrenaud, M., Houot, S.: Influence of waste initial ratios on the dynamic of organic matter stabilisation during composting. TSM 5, 35–43 (2007)

    Google Scholar 

  77. de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J.C., Petiot, C.: Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Manag. 30(3), 402–414 (2009)

    Article  Google Scholar 

  78. Mohajer, A., Tremier, A., Barrington, S., Martinez, J., Teglia, C., Carone, M.: Microbial oxygen uptake in sludge as influenced by compost physical parameters. Waste Manage. 29(8), 2257–2264 (2009)

    Article  Google Scholar 

  79. Tremier, A., de Guardia, A., Massiani, C., Paul, E., Martel, J.L.: A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted. Bioresour. Technol. 96(2), 169–180 (2005)

    Article  Google Scholar 

  80. Druilhe, C., De Guardia, A., Berthe, L., Tremier, A., Martel, J.-L.: Measurement of waste and compost biodegradability by respirometry. Practical applications. TSM 5, 44–57 (2007)

    Google Scholar 

  81. Vorkamp, K., Herrmann, R., Hvitved-Jacobsen, T.: Characterisation of organic matter from anaerobic digestion of organic waste by aerobic microbial activity. Bioresour. Technol. 78(3), 257–265 (2001)

    Article  Google Scholar 

  82. Moller, H.B., Sommer, S.G., Ahring, B.: Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg. 26(5), 485–495 (2004)

    Article  Google Scholar 

  83. Agnew, J.M., Leonard, J.J., Feddes, J., Feng, Y.: A modified air pycnometer for compost air volume and density determination. Can. Biosyst. Eng. 45(6), 27–35 (2003)

    Google Scholar 

  84. Veeken, A., Timmermans, J., Szanto, G., Hamelers, B.: Design of passively aerated compost systems on basis of compaction-porosity-permeability data. In: ORBIT International Conference on Biological processing of organics. Perth, Australia (2003)

  85. Haug, R.T.: The Practical Handbook of Composting Engineering. Lewis Publishers, Boca Raton, Florida (1993)

    Google Scholar 

  86. Epstein, E.: The Science of Composting. Boca Raton, Florida (1997)

  87. Keener, H.M., Ekinci, K., Elwell, D.L., Michel, F.C.: Principles of composting process optimization. In: International Scientific Symposium on Composting and Compost Utilization 2002. Colombus, USA (2002)

  88. Madejon, E., Diaz, M.J., Lopez, R., Cabrera, F.: New approaches to establish optimum moisture content for compostable materials. Bioresour. Technol. 85(1), 73–78 (2002)

    Article  Google Scholar 

  89. Mohee, R., Mudhoo, A.: Analysis of the physical properties of an in-vessel composting matrix. Powder Technol. 155(1), 92–99 (2005)

    Article  Google Scholar 

  90. Goyal, S., Dhull, S.K., Kapoor, K.K.: Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol. 96(14), 1584–1591 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was project funded by the French Agency for Environment and Energy Management (ADEME) and Suez-Environment and carried out in Cemagref research centre in Rennes (Brittany, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Teglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teglia, C., Tremier, A. & Martel, JL. Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use. Waste Biomass Valor 2, 43–58 (2011). https://doi.org/10.1007/s12649-010-9051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9051-5

Keywords

Navigation