Skip to main content

Advertisement

Log in

Thermal degradation of Miscanthus pellets: kinetics and aerosols characterization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Interest in the cultivation of plants specifically for energetic use has grown tremendously in recent years. Among the numerous tested energetic plants, Miscanthus seems to be an especially, promising ‘energy crop’. The presented data may have a contribution in developing Miscanthus pellets as a feedstock for energy recovery systems. Combustion and pyrolysis are efficient methods for controlling energy efficiency from Miscanthus. Thermogravimetric analyses were performed at heating rates of 5, 10, 15, and 20°C min−1 under nitrogen and air atmospheres with analysis of gaseous (CO, CO2 and VOC) pollutants and aerosols. Reactivity and kinetics measurements of Miscanthus pellets were also performed. Thermal degradation of Miscanthus pellets under inert atmosphere is similar to those found for other lignocellulosic materials. Under nitrogen, the main study was the determination of kinetic constants. These constants for main devolatilization step are not affected by variation of the heating rate with activation energy of 90 kJ mol−1 and a first reaction order. Thermal degradation of Miscanthus pellets under air occurs in main two steps: rapid decomposition and residual degradation. The amounts of CO2, CO and VOC emitted were 17.4, 3.7 and 1.0 mmol g−1, respectively. Pellets degradation produces 1.0 × 1012 particles (PM10) per gram of sample. 99% are particles with a diameter below 1 μm (57% are nanoparticles inferior to 0.1 μm). Nucleation mode dominates during the first step (190–253°C) centred at 0.04 μm whereas during the second step (253–310°C) a coagulation mode is observed centred at 0.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Styles, D., Jones, M.B.: Energy crops in Ireland: Quantifying the potential life-cycle greenhouse gas reductions of energy-crop electricity. Biomass Bioenergy 31, 759–772 (2007)

    Article  Google Scholar 

  2. Lewandowski, I., Kicherer, A., Vonier, P.: CO2-balance for the cultivation and combustion of Miscanthus. Biomass Bioenergy 8, 81–90 (1995)

    Article  Google Scholar 

  3. Acaroğlu, M., Aksoy, A.S.: The cultivation and energy balance of Miscanthus × giganteus production in Turkey. Biomass Bioenergy 29, 42–48 (2005)

    Article  Google Scholar 

  4. Styles, D., Thorne, F., Jones, M.B.: Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems. Biomass Bioenergy 32, 407–421 (2008)

    Article  Google Scholar 

  5. Collura, S., Azambre, B., Finqueneisel, G., Zimny, T., Weber, J.V.: Miscanthus × Giganteus straw and pellets as sustainable fuels, Combustion and emission tests. Environ. Chem. Lett. 4, 75–78 (2006)

    Article  Google Scholar 

  6. De Jong, W., Pirone, A., Wójtowicz, M.A.: Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel 82, 1139–1147 (2003)

    Article  Google Scholar 

  7. Linlay, W.H., Stapleton, K.W., Zuberbulher, P.: Fine particle fraction as measure of mass depositing in the lung during inhalation of nearly isotonic nebulized aerosols. J. Aerosol Sci. 28, 1301–1309 (1997)

    Article  Google Scholar 

  8. Renwick, L.C., Donaldson, K., Clouter, A.: Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 172, 119–127 (2001)

    Article  Google Scholar 

  9. Shi, J.P., Khan, A.A., Harrison, R.: M.: Measurements of ultrafine particle concentration and size distribution in the urban atmosphere. Sci. Total Environ. 235, 51–64 (1999)

    Article  Google Scholar 

  10. Tsukamoto, Y., Goto, Y., Odaka, M.: Continuous measurement of diesel particulate emissions by a Electrical Low-Pressure Impactor. SAE Technical paper series 2000-01-1138 (2000)

  11. Wierzbicka, A., Lillieblad, L., Pagels, J., Strand, M., Gudmundsson, A., Gharibi, A., Swietlicki, E., Sanati, M., Bohgard, M.: Particle emissions from district heating units operating on three commonly used biofuels. Atmos. Environ. 39, 139–150 (2005)

    Article  Google Scholar 

  12. Johansson, L.S., Tullin, C., Leckner, B., Sjövall, P.: Particle emissions from biomass combustion in small combustors. Biomass Bioenergy 25, 435–446 (2003)

    Article  Google Scholar 

  13. Marjamäki, M., Keskinen, J., Chen, D., Pui, D.: Performance evaluation of the electrical low pressure impactor (ELPI). J. Aerosol Sci. 31, 249–261 (2000)

    Article  Google Scholar 

  14. Gauchet, N., Vendel, J.: Modelling of the aerosol collection efficiency by drops-influence of the distance between the drops. J. Aerosol Sci. 31, 41–42 (2000)

    Article  Google Scholar 

  15. Tsai, R., Liang, L.J.: Correlation for thermophoretic deposition of aerosol particles onto cold plates. J. Aerosol Sci. 32, 473–487 (2001)

    Article  Google Scholar 

  16. Friedl, A., Padouvas, E., Rotter, H., Varmuza, K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191–198 (2005)

    Article  Google Scholar 

  17. Varhegi, G., Antal, M.J., Jakab, E., Piroska, S.: Kinetic modelling of biomass pyrolysis. J. Anal. Appl. Pyrol. 42, 73–87 (1997)

    Article  Google Scholar 

  18. Manasray, G.K., Ghaly, A.E.: Thermal degradation of rice husks in nitrogen atmosphere. Bioresour. Technol. 65, 13–20 (1998)

    Article  Google Scholar 

  19. Vamvuka, D., Kakaras, E., Kastanaki, E., Grammelis, P.: Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82, 1949–1960 (2003)

    Article  Google Scholar 

  20. Grønli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41, 4201–4208 (2002)

    Article  Google Scholar 

  21. Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M.: Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100, 1413–1418 (2009)

    Article  Google Scholar 

  22. Jeguirim, M., Trouvé, G.: Pyrolysis characteristics and kinetics of Arundo Donax using thermogravimetric analysis. Bioresour. Technol. 100, 4026–4031 (2009)

    Article  Google Scholar 

  23. Jeguirim, M., Dorge, S., Loth, A., Trouvé, G.: Devolatilization kinetics of Miscanthus straw from thermogravimetric analysis. Int. J. Green Energy 7, 164–173 (2010)

    Article  Google Scholar 

  24. Órfão, J.J.M., Antunes, F.J.A., Figueiredo, J.L.: Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78, 349–358 (1999)

    Article  Google Scholar 

  25. Mészáros, E., Várhegyi, G., Jakab, E., Marosvölgyi, B.: Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels 18, 497–507 (2004)

    Article  Google Scholar 

  26. Zhang, X., Xu, M., Sun, R., Sun, L.: Study on biomass pyrolysis kinetics. J. Eng. Gas Turbines Power 128, 493–496 (2006)

    Article  Google Scholar 

  27. Nassar, M.M., Ashour, E.A., Wahid, S.S.: Thermal characteristics of bagasse. J. Appl. Polym. Sci. 61, 885–890 (1996)

    Article  Google Scholar 

  28. Chouchene, A., Jeguirim, M., Khiari, B., Trouvé, G., Zagrouba, F.: Thermal degradation behavior of olive solid waste: Influence of the particle size and oxygen atmosphere. Resour. Conserv. Recy. 54, 271–277 (2010)

    Article  Google Scholar 

  29. Mansaray, K.G., Ghaly, A.E.: Thermal degradation of rice husks in nitrogen atmosphere. Bioresour. Technol. 65, 13–20 (1998)

    Article  Google Scholar 

  30. Kumar, A., Wang, L., Dzenis, Y.A., Jones, D.D., Hanna, M.A.: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 32, 460–467 (2008)

    Article  Google Scholar 

  31. Biagini, E., Tognotti, L.: Comparison of devolatilization/char oxidation and direct oxidation of solid fuels at low heating rate. Energy Fuels 20, 986–992 (2006)

    Article  Google Scholar 

  32. Altun, N.E., Kok, M.V., Hicyilmaz, C.: Effect of particle size and heating rate on the combustion of Silopi asphaltite. Energy Fuels 16, 785–790 (2002)

    Article  Google Scholar 

  33. Jeguirim, M., Dorge, S., Trouvé, G.: Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Biores. Tech. 101, 788–793 (2010)

    Article  Google Scholar 

  34. Dorge, S., Kehrli, D., Trouvé, G.: Caractérisation des fractions fines (PM2.5) et ultrafines (PM0.1) d’aérosols issus de la combustion de bois de pin par thermogravimétrie. Revue Internationale sur l’Ingénierie des Risques Industriels 1, 169–183 (2008)

    Google Scholar 

  35. Dorge, S., Kehrli, D., Jeguirim, M., Trouvé, G.: Study of aerosol formation during the oxidation of wood samples and lignocellulosic polymers by thermogravimetry. 11th Conference Process Integration Modelling and Optimization for energy Saving and Pollution Reduction, pp.1397–1398. Prague, Tchéquie, 24–28th Aug 2008

Download references

Acknowledgments

Authors acknowledge the Alsace Regional Council for supporting research in the GRE and Novabiom France for supplying Miscanthus pellets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaëlle Trouvé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorge, S., Jeguirim, M. & Trouvé, G. Thermal degradation of Miscanthus pellets: kinetics and aerosols characterization. Waste Biomass Valor 2, 149–155 (2011). https://doi.org/10.1007/s12649-010-9060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9060-4

Keywords

Navigation