Skip to main content

Advertisement

Log in

Evaluation of the Effect of Recycling on Sustainability of Municipal Solid Waste Management in Thailand

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Landfilling and recycling, the predominant waste management methods in Thailand have been evaluated in a life cycle perspective using a case study in Nonthaburi municipality. The major focus was to identify the effects of the recycling activities on the sustainability of the existing waste management. A set of relevant indicators has been used to evaluate the ultimate damages/effects related to environmental, economic and social aspects of waste management methods, including valorisation. “Damage to ecosystems” and “damage to abiotic resources” were considered as the most relevant indicators to assess environmental sustainability. “Life cycle cost” was used as the economic indicator. “Damage to human health” and “income based community well-being” were considered as the most relevant indicators for social sustainability assessment. The results obtained showed that recycling contributes substantially to improving overall social, economic and environmental sustainability of the waste management system. In fact, the recycling of 24 % of Municipal Solid Waste (MSW) was found to compensate the negative environmental, economic and social impacts resulting from the landfilling of the remaining 76 % of MSW. Furthermore, the quantified results in relation to sustainability of recycling reflect the progress made in realizing the policy targets and policy effectiveness in Nonthaburi. Thus, the results of this study could be used to convince stakeholders involved in waste management about the overall benefits of recycling and its influences on sustainability for promoting and strengthening recycling activities in Thailand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nithikul, J., Karthikeyan, O.P., Visvanathan, C.: Reject management from a mechanical biological treatment plant in Bangkok. Thailand. Resour. Conserv. Recy. 55(4), 417–422 (2010)

    Article  Google Scholar 

  2. PCD.: State of Municipal Solid Waste. The Pollution Control Department, Thailand. http://www.pcd.go.th/(2009). Accessed 15 June 2010

  3. Chiemchaisri, C., Juanga, J.P., Visvanathan, C.: Municipal solid waste management in Thailand and disposal emission inventory. Environ. Monit. Assess. 35, 13–20 (2007)

    Article  Google Scholar 

  4. Nonthaburi Municipality: Sustainable Environmental Management in Nonthaburi. Nonthaburi Municipality. Bangkrasor, Thailand (2009)

  5. Agarwal, A., Singhmar, A., Kulshrestha, M., Mittal, A.K.: Municipal solid waste recycling and associated markets in Delhi. India. Resour. Conserv. Recy. 44, 73–90 (2005)

    Article  Google Scholar 

  6. Nonthaburi Municipality.: Nonthaburi Municipality. Bangkrasor, Thailand11000 (Personal communication) (2010)

  7. Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., Suh, S.: Recent developments in life cycle assessment. J. Environ. Manage. 91, 1–21 (2009)

    Article  Google Scholar 

  8. Eriksson, O., Baky, A.: Identification and testing of potential key parameters in system analysis of municipal solid waste management. Resour. Conserv. Recy. 54, 1095–1099 (2010)

    Article  Google Scholar 

  9. CALCAS—Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability.: http://www.calcasproject.net (2011). Accessed 25 January 2011

  10. IPCC.: In: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (eds) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

  11. Singh, R.K., Murty, H.R., Gupta, S.K., Dikshite, A.K.: An overview of sustainability assessment methodologies. Ecol. Indic. 9, 189–212 (2009)

    Article  Google Scholar 

  12. Liamsanguan, C., Gheewala, S.H.: The holistic impact of integrated solid waste management on greenhouse gas emissions in Phuket. J. Cleaner Prod. 16, 1865–1871 (2008)

    Article  Google Scholar 

  13. Cleary, J.: Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ. Inter. 35(8), 1256–1266 (2009)

    Article  Google Scholar 

  14. Jeswani, H.K., Azapagic, A., Schepelmann, P., Ritthoff, M.: Options for broadening and deepening the LCA approaches. J. Cleaner Prod. 18, 120–127 (2010)

    Article  Google Scholar 

  15. Cifrian, E., Coz, A., Viguri, J., Andrés, A.: Indicators for valorisation of municipal solid waste and special waste. Waste Biomass Valor. 1, 479–486 (2010)

    Article  Google Scholar 

  16. Pré Consultants.: The Eco-indicator 99—A Damage Oriented Method for Life Cycle Assessment. Methodology Report, The Netherlands. http://www.pre.nl/(2001). Accessed 30 December 2008

  17. Goedkoop, M.J., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., Van Zelm R.: ReCiPe-2008—A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. First edition Report I: Characterization. http://www.lciarecipe.net (2009). Accessed 25 May 2010

  18. Scotti, M., Bondavalli, C., Bodini, A.: Ecological footprint as a tool for local sustainability: the municipality of Piacenza (Italy) as a case study. Environ. Impact Assess. Rev. 29, 39–50 (2009)

    Article  Google Scholar 

  19. Schaefer, F., Luksch, U., Steinbach, N., Cabeça, J., Hanauer, J.: Ecological Footprint and Biocapacity. Office for Official Publications of the European Communities. ISBN 92-79-02943-6 (2006)

  20. Huijbregts, M.A.J., Hellweg, S., Frischknecht, R., Hungerbühler, K., Hendriks, A.J.: Ecological footprint accounting in the life cycle assessment of products. Ecol. Econ. 64, 798–807 (2008)

    Article  Google Scholar 

  21. Wackernagel, M., Monfreda, C., Moran, D., Wermer, P., Goldfinger, S., Deumling, D., Murray, M.: National Footprint and Biocapacity Accounts 2005: The Underlying Calculation Method. Global Footprint Network, Oakland (2005)

    Google Scholar 

  22. Omer, A.M.: Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12, 2265–2300 (2008)

    Article  Google Scholar 

  23. Wang, Y.: Fiber and textile waste utilization. Waste Biomass Valor 1, 135–143 (2010)

    Article  Google Scholar 

  24. CIA.: The World Fact Book. The US Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/sw.html (2008). Accessed 25 March 2010

  25. Reich, M.C.: Economic assessment of municipal waste management systems—case studies using a combination of life cycle assessment (LCA) and life cycle costing (LCC). J. Cleaner Prod. 13, 253–263 (2005)

    Article  Google Scholar 

  26. Ngoc, U.N., Schnitzer, H.: Sustainable solutions for solid waste management in Southeast Asian countries. Waste Manage. 29, 1982–1995 (2009)

    Article  Google Scholar 

  27. Lutz, J., Lekov, A., Chan, P., Whitehead, C.D., Meyers, S., McMahon, J.: Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers. Energy 31, 311–329 (2006)

    Article  Google Scholar 

  28. Utne, I.B.: Life cycle cost (LCC) as a tool for improving sustainability in the Norwegian fishing fleet. J. Cleaner Prod. 17, 335–344 (2009)

    Article  Google Scholar 

  29. Steen, B.: A systematic approach to environmental priority strategies in product development (EPS) version 2000—models and data of the default method, CPM report 1999. Chalmers University of Technology, Environmental Systems Analysis (2000)

  30. Nguyen, T.L.T., Gheewala, S.H.: Fuel ethanol from cane molasses in Thailand: environmental and cost performance. Energy Policy 36, 1589–1599 (2008)

    Article  Google Scholar 

  31. Giusti, L.: A review of waste management practices and their impact on human health. Waste Manage. 29, 2227–2239 (2009)

    Article  Google Scholar 

  32. Pré Consultants.: BUWAL 250, SimaPro 7.1 manual. Amersfoort, Netherlands (2004)

  33. Jørgensen, A., Bocq, A.L., Nazarkina, L., Hauschild, M.: Methodologies for social life cycle assessment. Int. J. Life Cycle Assess. 13(2), 96–103 (2008)

    Article  Google Scholar 

  34. Hunkeler, D.: Societal LCA Methodology and Case Study. Int. J. Life Cycle Assess. 11(6), 371–382 (2006)

    Article  Google Scholar 

  35. PCD.: Vehicle emission data, pollution control department, Thailand. Available http://infofile.pcd.go.th (2009) Accessed on 10 November 2010

  36. Hischier, R., St. Gallen, E.M.P.A.: Ecoinvent. Life cycle inventories of packaging and graphical papers. Eco invent report no. 11, Swiss Centre for Life Cycle Inventories, Dübendorf (2007)

  37. DEDE: Department of Alternative Energy Development and Efficiency.: Annual report, Ministry of Energy, Thailand (2008)

  38. IPCC.: In: Eggleston H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (eds.) Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. Published: IGES, Japan (2006)

  39. IAI.: IAI-International Aluminium Institute. Life cycle Assessment of Aluminium: Inventory Data for the Primary Aluminium Industry. http://www.world-aluminium.org/About+Aluminium/Story+of (2007). Accessed 5 August 2010

  40. EAA (European Aluminium Association).: Environmental Profile Report for the European Aluminium Industry. http://www.eaa.net/upl/4/en/doc/EAA_Environmental_profile_report_May08.pdf (2008). Accessed 15 August 2010

  41. Oers, L., Koning, A., Jeroen, G.: Abiotic Resource Depletion in LCA. Road and Hydraulic Engineering Institute, Leiden (2002)

    Google Scholar 

Download references

Acknowledgments

Research grant from the Joint Graduate School of Energy and Environment is acknowledged. The authors would like to thank Nonthaburi Municipal Council, sorting and recycling facilities in Thailand for providing required data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabbir H. Gheewala.

Appendices

Appendix 1: Midpoint Impact Categories Related to MSW Management

 

Resources consumption (inputs) and emissions(outputs)/from MSW management

Midpoint impacts

Unit of measurement

General formula to quantify the magnitude of impacts

References for background information

Input: Land consumption

Land occupation and land transformation → treatment facilities, final disposal, transportation, fossil fuel mining for energy

Land occupation (LO)/(Ecological Footprint—EF)

m2 year

\( {\text{LO}}_{\text{direct(local)}} = \sum\limits_{\text{a}} {{\text{A}}_{\text{a}} \times {\text{t}}_{\text{a}} } \) where LODirect, direct land occupation; Aa, occupation of area by local land use type a, ta-occupation time (years)

\( {\text{LO}}_{\text{Gross}} = {\text{LO}}_{\text{EM}} + {\text{LO}}_{\text{T}} + {\text{LO}}_{\text{TF}} \quad {\text{LO}}_{\text{Net}} = {\text{LO}}_{\text{Gross}} - {\text{LO}}_{\text{P}} \) where LOEM, T,TF,P, land occupation for energy and material production, transportation, treatment facility, by-products

[21, 41]

Input: Fossil fuel and mineral consumption

Crude oil → diesel production for transportation, waste handling and processing machineries

Coal, natural gas, crude oil → electricity and thermal energy required for recycling, operating machineries

Abiotic resource depletion potential

kg Sb eq.

\( {\text{AR}}_{\text{Gross(i)}} = {\text{AR}}_{\text{EM(i)}} + {\text{AR}}_{\text{T(i)}} + {\text{AR}}_{\text{TF(i)}} \quad {\text{AR}}_{\text{Net(i)}} = {\text{ARD}}_{\text{Gross(i)}} - {\text{AR}}_{\text{REM(i)}} = {\text{m}}_{\text{i}} \) where ARGross(i), gross abiotic resource i, AR REM(i) is abiotic resources i conservation from Recovered Energy and Materials. mi, net quantity of resource i extracted

\( {\text{ADP}}_{\text{i}} = \frac{{{\text{DR}}_{\text{i}} }}{{\left( {{\text{R}}_{\text{i}} } \right)^{2} }} \times \frac{{({\text{R}}_{\text{ref}} )^{2} }}{{{\text{DR}}_{\text{ref}} }} \) where ADPi, abiotic depletion potential of resource i; Ri, ultimate reserve of resources i (kg); DRi, extraction rate of resources i (kg year−1); Rref, ultimate reserve of the reference resource (antimony kg); DRref, extraction rate of the reference resource (kg year−1) \( {\text{ADP}} = \sum\limits_{i} {{\text{ADP}}_{i} } \times {\text{m}}_{\text{i}} \)

[41]

Outputs: Emissions

NH3, NO2 , NO3 , PO −34  → landfill/open dumps, anaerobic digestion

NOx → transportation, energy and auxiliary materials production, incineration,

NH3, H2S → landfills/open dumps, anaerobic digestion,

NOx, SOx → fuel production, incinération transportation

HCl, HF → fuel production

Eutrophication potential

kg PO4 3− eq.

or kg NO3 eq

\( {\text{X}}_{\text{Gross}} = \sum {\left( {{\text{Q}}_{\text{i}} {\text{EM}} \times {\text{EF}}_{\text{i}} } \right)} + \sum {\left( {{\text{Q}}_{\text{i}} {\text{T}} \times {\text{EF}}_{i} } \right)} + \sum {\left( {{\text{Q}}_{\text{i}} {\text{TF}} \times {\text{EF}}_{\text{i}} } \right)} \)

\( {\text{X}}_{\text{Net}} = {\text{X}}_{\text{Gross}} - \sum {({\text{Q}}_{\text{i}} {\text{PA}} \times {\text{EF}}_{\text{i}} )} \)

Here X = GWP, POFP, EP, AP, HTP

GWP, global warming potential; POFP, photo-oxidant formation potential; EP, eutrophication potential; AP, acidification potential; HTP, human toxicity potential; Qi, magnitude of substance i from EM—energy and material production; T, transportation; TF, treatment facility; PA, potential avoidance; EFi, equivalency factor of ith substance

[7, 12, 38]

Acidification potential

kg SO2 eq.

VOCs, NH3 → landfill/open dumps, anaerobic digestion, composting,

NOx, SOx, PM10 → Transportation, energy and auxiliary materials production, incineration,

Human toxicity potential

kg 1–4 DB eq

VOCs → landfill/open dumps, anaerobic digestion, aerobic composting,

CO, NOx → transportation, energy and auxiliary materials production, incineration,

Photo oxidant formation potential

kg C2H4 eq.

CH4 → landfill/open dumps

CO2, N2O, CO → transportation of MSW, energy and auxiliary material production, incineration

Global warming potential

kg CO2 eq.

Appendix 2: Life Cycle Inventory of Recycling, Production of an Equal Amount of Materials via Virgin Production and Landfilling

 

Paper recycling

Plastics recycling

Aluminium recycling

Inputs/outputs

Units

1 tonne of paper waste recycling

Virgin production of 893 kg paper

Inputs/outputs

Units

1 tonne of plastic waste recycling

Virgin production of 900 kg plastics

Inputs/outputs

Units

1 tonne of aluminium waste recycling

Virgin production of 758 kg Aluminium

Raw materials/energy consumption

Raw materials/energy consumption

Raw materials/energy consumption

Hard Wood

m3

0.00E+00

6.96E−02

Hard coal

kg

4.25E−02

1.03E+02

Total scrap input

kg

1.00E+03

0.00E+00

Soft wood

m3

0.00E+00

1.97E+00

Soft coal

kg

7.45E+02

1.51E+01

Bauxite

kg

1.40E−02

3.99E+03

Wood chips

m3

0.00E+00

7.50E−02

Heavy oil

kg

8.69E+00

8.24E+02

Alumina input

kg

0.00E+00

1.46E+03

Sulphate pulp

kg

0.00E+00

6.99E+01

Natural gas

m3

6.55E+02

6.25E+02

Anodes

kg

0.00E+00

3.29E+02

Mixed waste paper

kg

9.76E+02

1.81E+02

Aluminium,

kg

0.00E+00

1.51E−01

Aluminium

kg

0.00E+00

7.58E+02

Kaolin

kg

5.76E+01

8.03E+01

Iron, 46 % in ore

kg

9.75E−03

2.63E+00

Electricity

kWh

9.65E+01

1.19E+04

Aluminium

kg

9.22E+00

6.51E+00

Emissions

Hard coal

kg

6.06E+01

2.40E+03

Electricity

kWh

4.70E+02

1.12E+03

CO2

kg

2.14E+03

1.58E+03

Soft coal

kg

1.90E+01

2.57E+03

Hard coal

kg

3.35E+02

9.13E+01

CO

kg

1.85E+00

7.56E+00

Heavy oil

kg

5.63E+01

2.10E+02

Soft coal

kg

9.27E+01

2.46E+02

CH4

kg

1.71E−02

1.25E+01

Natural gas

m3

1.67E+01

6.08E+02

Heavy oil

kg

1.51E+01

2.83E+01

NOx

kg

6.76E+00

4.01E+00

Emissions

Natural gas

m3

8.30E+01

1.95E+02

SOx

kg

9.05E+00

4.19E+00

CO2

kg

3.91E+02

1.24E+04

Emissions

NMVOC

kg

1.48E−01

3.64E+00

CO

kg

3.11E−01

1.64E+01

CO2

kg

1.25E+03

9.61E+02

PM > 10 mm

kg

2.06E+00

6.68E−01

CH4

kg

3.23E−02

1.27E+00

CO

kg

1.66E+00

1.94E+00

HCl

kg

4.66E−06

5.50E−02

N2O

kg

1.69E−05

0.00E+00

CH4

kg

1.94E−01

2.56E−01

    

NH3

kg

8.91E−05

0.00E+00

N2O

kg

8.63E−03

2.37E−04

    

NOx

kg

6.90E−01

4.19E+01

NH3

kg

4.68E−04

1.26E−03

    

SOx

kg

3.45E−01

5.43E+01

NOx

kg

3.23E+00

3.28E+00

    

NMVOCs

kg

3.76E−02

7.73E−02

SOx

kg

1.26E+00

2.80E+00

    

PM > 10 mm

kg

1.53E−01

1.09E+01

NMVOCs

kg

1.95E−01

4.91E−01

    

HF

kg

0.00E+00

4.22E−01

PM > 10 mm

kg

8.48E−01

9.27E−01

        

Metal recycling

Glass recycling

Existing landfilling

Inputs/outputs

Units

1 tonne of metal waste recycling

Virgin production of 900 kg metals

Inputs/outputs

Units

1 tonne of glass waste recycling

Virgin production of 950 kg glass

Inputs/outputs

Units

Landfilling of 1 tonne of waste

Raw materials/energy consumption

Raw materials/energy consumption

Raw materials/energy consumption

Limestone

kg

0.00E+00

2.57E+02

Recycling glass

kg

1.00E+03

1.96E+01

Bauxite

kg

5.69E−02

Iron, 46 % in ore

kg

0.00E+00

2.18E+03

Dolomite

kg

0.00E+00

1.85E+02

Iron

kg

2.97E−02

Scrap, external

kg

1.07E+03

1.10E+02

Iron ore

kg

0.00E+00

1.12E−02

Hard coal

kg

1.37E−01

Hard coal

kg

1.65E+02

1.07E+03

Limestone

kg

5.10E+00

2.40E+02

Soft coal

kg

1.07E−01

Soft coal

kg

2.54E+02

9.60E+01

Sand, quartz

kg

0.00E+00

5.83E+02

Heavy oil

kg

7.14E+00

Heavy oil

kg

2.23E+01

7.97E+01

Sodium chloride

kg

6.39E+00

2.31E+02

Emissions

Natural gas

m3

1.15E+02

1.18E+02

Hard coal

kg

1.15E+01

9.60E+01

CO2

kg

2.65E+01

Emissions

Soft coal

kg

7.93E+00

1.92E+01

CO

kg

3.85E−01

CO2

kg

1.05E+03

2.69E+03

Heavy oil

kg

1.60E+02

2.06E+02

CH4

kg

3.50E+01

CO

kg

4.16E+00

1.67E+01

Natural gas

m3

2.34E+01

−3.02E+00

N2O

kg

7.10E−05

CH4

kg

1.83E+00

9.77E+00

Emissions

NH3

kg

1.02E+01

N2O

kg

5.34E−03

8.69E−03

CO2

kg

5.51E+02

1.00E+03

NOx

kg

2.55E−01

NH3

kg

1.69E−03

1.78E−03

CO

kg

2.54E−01

1.49E+00

SOx

kg

2.48E−02

NOx

kg

2.43E+00

4.12E+00

CH4

kg

7.42E−01

7.86E−01

H2S

kg

4.47E−01

SOx

kg

2.64E+00

5.64E+00

N2O

kg

1.60E−03

2.49E−03

NMVOCs

kg

1.48E−01

H2S

kg

0.00E+00

8.96E−03

NH3

kg

2.49E−03

8.44E−02

PM > 10 mm

kg

6.08E−02

NMVOCs

kg

4.09E−01

9.14E−01

NOx

kg

2.89E+00

1.04E+00

NO3

kg

9.01E−01

PM > 10 mm

kg

1.06E+00

1.28E+00

SOx

kg

7.09E−01

4.26E+00

   

HF

kg

1.37E−02

9.96E−03

NMVOCs

kg

1.30E+00

2.00E+00

   

HCl

kg

1.20E−01

7.81E−02

PM > 10 mm

kg

6.74E−01

1.84E+00

   
    

HF

kg

2.23E−02

3.12E−03

   
    

HCl

kg

5.58E−02

1.12E−01

   

Appendix 3: Quantification of Ultimate Damages for Recycling of One tonne of Paper Waste

(a) Quantification of “damage to ecosystem” from paper recycling (this table shows only the gross damage calculation from paper recycling. Similar approach was followed to quantify gross damage from the virgin production process)

 

 

Concept/mathematical formula used

Magnitude

Description/background information

1. Ecosystem damage from acidifying/eutrophying substances

   

Acidifying/eutrophying substances

 

NH3

NOx

SOx

 

Emission per tonne of waste paper recycling (kg)

(mi)

4.68E−04

3.23E+00

1.26E+00

Data from inventory analysis

Damage factor \( ( {\text{PDF}}\,{\text{m}}_{\text{local}}^{2} \,{\text{year}}) \)/kg of substance

i)

15.57

5.713

1.041

[16]

Damage to ecosystem from each substance\( ({\text{PDF}}\,{\text{m}}_{\text{local}}^{2} \,{\text{year}}) \)/tonne of waste paper

\( {\text{DE}}_{\text{local}} = {\text{m}}_{\text{i}} \times \alpha_{\text{i}} \)

7.29E−03

1.84E+01

1.32E+00

[16]

Total damage to ecosystem from all the acidifying/eutrophying substances \( (PDF.m_{local}^{2} .yr) \)/tonne of waste paper

\( {\text{DE}}_{\text{local}} = \sum\limits_{\text{i}} {{\text{m}}_{\text{i}} \alpha_{\text{i}} } \)

1.98E+01

[16]

Equivalency factor (EF) for marginal cropland (global m2) (assuming the effects may occur at cropland)

Equivalency factor (global m2/m2)

1.8

[20, 21]

Yield factor for marginal cropland

Yield factor (dimensionless)

2

[18, 19]

Damage to ecosystem at global scale due to acidifying/eutrophying substances (PDF global m2 year)/tonne of waste paper

DEglobal = DElocal × equivalency factor (global ha/ha) × yield factor

7.12E+01

Authors derived formula

2. Ecosystem damage due to direct and indirect land occupation/conversion

Damage to ecosystem (local) due to direct land occupation for recycling of paper\( ({\text{PDF}}\,{\text{m}}_{\text{local}}^{2} \,{\text{year}}) \)/tonne of waste paper

DElocal = PDF × Area × time

(direct land occupation for paper recycling is assumed to be negligible. Thus Area = 0)

0E+00

[16]

Damage to ecosystem due to direct land occupation for recycling of paper (PDF global m2 year)/tonne of waste paper

DEglobal = DElocal × equivalency factor (global ha/ha) × Yield factor

0E+00

Authors derived formula

Total fossil energy consumption for recycling (MJ/tonne of waste paper) (including energy for transportation, thermal energy and electricity)

Total energy consumed (MJ) = transportation + heat + electricity

1.32E+04

Authors derived formula

Land occupation for fossil energy generation (global m2 year/MJ) 

Characterization factor (global m2 year/MJ) 

0.5

[20]

Land occupation for fossil energy generation (global m2 year/tonne of waste paper)

Land occupation(global) = total energy (MJ) × characterization factor (global m2 year/MJ)

6.62E+03

[16]

PDF of fossil fuel mining land

PDF (dimensionless)

1.19

[17]

Yield factor for mining land

Yield factor (dimensionless)

2

[18, 19]

Damage to ecosystem due to fossil energy consumption (PDF global m2 year)/tonne of waste paper

DEglobal = land occupation(global) × PDF × yield factor

1.58E+04

 

Gross ecosystem damage (PDF global m 2 year) from recycling of one tonne of waste paper

Gross ecosystem damage = DE acidification/eutrophication  + DE occupatiom

1.58E+04

 

(b) Quantification of “damage to abiotic resources” from recycling

Calculation of damage to reference resources (Dr) (Reference resource—crude oil 42 MJ/kga)

Description

Value

Unit

(a) Volume of one oil barrel in liters

160

L

(b) Estimated extraction cost incrementa

30

$/barrel in year 2000

(c) Mass of oil in one barrel

136

kg

(d) Extraction cost increment per kg oil extraction (d) = (b)/(c)

0.22

$/kg (relative to year 2000)

(e) Production amount in base year 2000 (based on ReCiPe Model)a

3.43E+12

kg

(f) Marginal Cost Increase (MCIr)a (f) = (d)/(e)

6.43E−14

$/kg/kg

(g) Average inflation rate of Middle East countries (d)b

5

%

(h) Time period between current year and the base year (t)a

10

From base year (2000 to 2010)

(i) Future value of 1 dollar for year 2010 (1 + d)t (i) = (1 + (g)/100)h

1.63

$ (relative to base year 2000)

(j) Damage of 1 kg of crude oil extraction (Dr) (j) = (e) × ((f) × (i)

0.36

$/kg (year 2010)

  1. (Sources of references: a[16], b[24])

Calculation of “damage to abiotic resources” from paper recycling (similar approach was followed to calculate damage from the virgin production process)

 

Type of fossil fuel used

   

Description

Hard coal (18 MJ/kg)

Soft coal (10 MJ/kg)

Heavy oil (42 MJ/kg)

Natural gas (36.6 kg/m3)

Amount of fossil energy used (kg/tonne of paper waste)*

335

92.7

15.1

83

Characterization factors (relative to the energy content of crude oil 42 MJ/kg)a

0.43

0.24

1.00

0.87

Fossil fuel consumption (kg crude oil-eq)/tonne of paper waste

143.57

22.07

15.10

72.33

Total fossil fuel consumption (kg crude oil-eq/tonne of paper waste)

253.07

Damage of 1 kg of crude oil (reference resource) extraction ($/kg)

0.36

Gross damage to abiotic resources from recycling ($/tonne of paper waste)

91.11

  1. Sources of references: a[16]
  2. * These data obtained from inventory analysis, see “Appendix 2

(c) Calculation of “Life Cycle Cost” of paper recycling

 

Description

Value

Unit

(a) Capital Cost

85 (3)*

Baht/tonne of paper waste

(b) Operational and maintenance costs

18,457 (599)

Baht/tonne of paper waste

(c) Environmental cost

2,833 (92)

Baht/tonne of paper waste

(d) Gross life cycle cost of paper recycling (d) = (a) + (b) + (c)

21,374 (694)

Baht/tonne of paper waste

Revenue generation

  

(e)Average selling prices of the recycled paper

22,400 (727)

Baht/tonne of recycled paper

(f) Recyclability of paper waste

0.91

Tonne of recycled paper/tonne of paper waste

(g) Income generation potential by selling recycled paper (g) = (e) × (f)

20,384 (662)

Baht/tonne of paper waste

(h) Credited environmental cost

3,045 (99)

Baht/tonne of paper waste

(i) Total revenue generation (i) = (g) + (h)

23,429 (761)

Baht/tonne of paper waste

(j) Net life cycle cost (j) = (d) − (i)

−2,055 (−67)

Baht/tonne of paper waste

  1. *Values in parentheses are in US$ per tonne of paper waste or recycled paper

(d) Calculation of “damage to human health” from paper recycling (similar approach was followed to calculate damage from the virgin production process)

 

(a) Type of emissions*

(b) Magnitude of emissions from paper recycling (kg/tonne of paper waste)*

Characterization factorsa

(f) Total health damage (DALYs/tonne of paper waste) (f) = (b) × (c) + (b) × (d) + (b) × (e)

(c) Mortality occurrence (YOLL/kg of pollutant)

(d) Severe morbidity(person years YLD/kg of pollutant)

(e) Morbidity (persons years YLD/kg of pollutant)

 

CO2

1.25E+03

7.93E−07

3.53E−07

6.55E−07

2.26E−03

CO

1.66E+00

2.38E−06

1.06E−06

1.96E−06

8.94E−06

CH4

1.94E−01

1.95E−05

8.65E−06

1.60E−05

8.55E−06

N2O

8.63E−03

2.87E−04

1.10E−04

2.14E−04

5.27E−06

NH3

4.68E−04

2.64E−05

−4.66E−06

7.22E−06

1.36E−08

NOx

3.23E+00

2.45E−05

−2.06E−06

3.61E−06

8.41E−05

SOx

1.26E+00

3.76E−05

−6.58E−06

1.02E−05

5.21E−05

NMVOCs

1.95E−01

1.53E−05

4.25E−06

0.00E+00

3.83E−06

PM > 10 mm

8.48E−01

4.24E−04

−2.33E−06

3.61E−06

3.61E−04

Total health damage (DALYs/tonne of paper waste recycling (∑f)

2.78E−03

  1. Sources of references: a[29]
  2. * These data obtained from inventory analysis, see “Appendix 2

(e) Calculation of “Income based community well-being” from paper recycling

 

Description

Amount

Unit

Income generation from selling of paper wastea

4376.54

Baht/tonne of paper waste

Total created employment opportunities throughout the recycling process chainb

0.71

Labour days/tonne

Wages based income generationc

1,797.88

Baht/tonne of paper waste

Total income generation potential to the community

6,174.43

Baht/tonne of paper waste

Per capita living expenses of middle-class people in Thailand

5,000

Baht/person/month

No of individual who may deserve a better lifestyle due to this income increment in the society

≥1

No of individuals/tonne of paper waste recycling

  1. aAverage selling price of paper waste
  2. bTotal labour requirement at sorting and recycling facilities
  3. cWages based income has been calculated considering the hierarchal positions of the created jobs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menikpura, S.N.M., Gheewala, S.H., Bonnet, S. et al. Evaluation of the Effect of Recycling on Sustainability of Municipal Solid Waste Management in Thailand. Waste Biomass Valor 4, 237–257 (2013). https://doi.org/10.1007/s12649-012-9119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9119-5

Keywords

Navigation