Skip to main content

Advertisement

Log in

pH Dependent Leaching Behavior of Zn, Cd, Pb, Cu and As from Mining Wastes and Slags: Kinetics and Mineralogical Control

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

From the Middle Ages until the beginning of the twentieth century, extensive Zn–Pb mining and smelting was carried out in East-Belgium. By lack of waste treatment techniques and sustainable management practices, metal-bearing slags and unprocessed waste were dumped in huge tailings, which still represent an important source of contamination. A chemical and mineralogical characterization of different types of mining waste originating from the former Pb–Zn mining industry was performed in order to gain a better understanding of the slag properties, with special attention to heavy metal release under varying pH conditions, and to bring this in relation to different management scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lottermoser, B.G.: Mine Wastes, 3rd edn. Springer-Verlag Berlin, Heidelberg (2010). doi:10.1007/978-3-642-12419-8_1

    Book  Google Scholar 

  2. Vojtěch, E., Zdenek, J., Touray, J.C., Jelíne, E.: Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Příbram district, Czech Republic. C. R. Acad. Sci. Ser.IIA Earth and Planet. Sci 331, 245–250 (2000)

    Google Scholar 

  3. Swennen, S., Van der Sluys, J.: Zn, Pb, Cu and As distribution patterns in overbank and medium-order stream sediment samples: their use in exploration and environmental geochemistry. J. Geochem. Explor. 65, 27–45 (1998)

    Article  Google Scholar 

  4. Marguí, E., Queralt, I., Carvalho, M.L., Hidalgo, M.: Assessment of metal availability to vegetation (Betulapendula) in Pb-Zn ore concentrate residues with different features. Environ. Pollut. 145, 179–184 (2007)

    Article  Google Scholar 

  5. Kapusta, P., Szarek-Łukaszewska, G., Stefanowicz, A.M.: Direct and indirect effects of metal contamination on soil biota in a Zn–Pb post-mining and smelting area (S Poland). Environ. Pollut. 159, 152–1516 (2011)

    Article  Google Scholar 

  6. Barna, R., Moszkowicz, P., Gervais, C.: Leaching assessment of road materials containing primary lead and zinc slags. WasteManag 4, 945–955 (2000)

    Google Scholar 

  7. Johansson, N., Krook, J., Eklund, M., Berglund, B.: An integrated review of concepts and initiatives for mining the technosphere: towards a new taxonomy. J. Clean Prod. 55, 35–44 (2013)

    Article  Google Scholar 

  8. Manz, M., Castro, J.: The environmental hazard caused by smelter slags from the Sta. Maria de la Paz mining district in Mexico. Environ. Pollut. 98, 7–13 (1997)

    Article  Google Scholar 

  9. Stüben, D., Berner, Z., Kappes, B., Puchelt, H.: Environmental monitoring of heavy metals and arsenic from Ag–Pb–Zn mining. A case study over two millennia. Environ. Monitor. Assess. 70, 181–200 (2001)

    Article  Google Scholar 

  10. Lim, T.T., Chu, J.: Assessment of the use of spent copper slag for land reclamation. Waste Manag. Res. 24, 67–73 (2006)

    Article  Google Scholar 

  11. Al-Abed, S., Hageman, P.L., Jegadeesan, G., Mdhavan, N., Allen, D.: Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci. Total Environ. 364, 14–23 (2006)

    Article  Google Scholar 

  12. Morrison, A.L., Gulson, L.: Preliminary findings of chemistry and bio accessibility in base metal smelter slags. Sci. Total Environ. 382, 30–42 (2007)

    Article  Google Scholar 

  13. Schaider, L., Senn, D.B., Brabander, D.J., MacCarthy, K.D., Shine, J.P.: Characterization of zinc, lead, and cadmium in mine waste: implications for transport, exposure, and bioavailability. Environ.Sci.Technol. 41, 4164 (2007)

    Article  Google Scholar 

  14. Shanmuganathan, P., Lakshmipathiraj, P., Srikanth, S., Nachiappan, A.L., Sumathy, A.: Toxicity characterization and long-term stability studies on copper slag from the ISASMELT process. Resour. Conserv. Recycl. 52, 601–611 (2008)

    Article  Google Scholar 

  15. Lim, M., Han, G.-C., Ahn, J.-W., You, K.-S., Kim, H.-S.: Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. Int. J. Environ. Res. Public Health. 6, 2865–2879 (2009)

    Article  Google Scholar 

  16. Piatak, N.M., Seal II, R.R.: Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA). App.Geochem. 25, 302–320 (2010)

    Article  Google Scholar 

  17. Vítková, M., Ettler, V., Mihaljevica, M., Šebek, O.: Effect of sample preparation on contaminant leaching from copper smelting slag. J. Hazard. Mater. 197, 417–423 (2011)

    Article  Google Scholar 

  18. de Andrade Lima, L.R.P., Bernardez, L.A.: Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil. J. Hazard. Mater. 189, 692–699 (2011)

    Article  Google Scholar 

  19. Xenidis, A., Papassiopi, N., Komnitsas, K.: Carbonate rich mine tailings in Lavrion: risk assessment and proposed rehabilitation schemes. Adv. Environ. Res. 7(2), 207–222 (2003)

    Google Scholar 

  20. Onisei, S., Pontikes, Y., Van Gerven, T., Angelopoulos, G.N., Velea, T., Predica, V., Moldovan, P.: Synthesis of inorganic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205–206, 101–110 (2012)

    Article  Google Scholar 

  21. Pontikes, Y., Machiels, L., Onisei, S., Pandelaers, L., Geysen, D., Jones, P.T., Blanpain, B.: Slags with a high Al and Fe content as precursors for inorganic polymers. Appl. Clay Sci. 73, 93–102 (2013)

    Article  Google Scholar 

  22. Kierczak, J., Potysz, A., Pietranik, A., Tyszka, R., Modelska, M., Néel, C., Ettler, V., Mihaljevič, M.: Environmental impact of the historical Cu smelting in the RudawyJanowickie Mountains (south-western Poland). J. Geochem. Explor. 124, 183–194 (2013)

    Article  Google Scholar 

  23. Vítková, M., Hyks, J., Ettler, V., Astrup, T.: Stability and leaching of cobalt smelter fly ash. App. Geochem. 29, 117–125 (2013)

    Article  Google Scholar 

  24. USEPA: toxicity characterization leaching procedure (TCLP), EPA Method 1311. Washington, USA (1990)

  25. USEPA: Applicability of the toxicity characteristic leaching procedure to mineral processing waste. Technical background document supporting the supplement proposed rule applying phase IV land disposal restrictions to newly identified mineral processing wastes. Office of solid waste. (1995)

  26. USEPA: Synthetic precipitation leaching procedure (SPLP), EPA Method 1312. Washington, USA (1994)

  27. Hageman, P.L., Briggs, P.H., Desborough, G.A., Lamothe, P.J., Theodorakos, P.M.: Synthetic precipitation leaching procedure (SPLP) leachate chemistry data for solid mine-waste composite samples from southwestern New Mexico, and Leadville, Colorado. USGS Open-File Report: 2000–33 (2000)

  28. Mäkelä, M., Välimäki, I., Pöykiö, R., Nurmesniemi, H., Dahl, O.: Evaluation of trace element availability from secondary metallurgical slag generated in steelmaking by sequential chemical extraction. Int. J. Environ. Sci. Technol. (2013). doi:10.1007/s13762-012-0160-5

    MATH  Google Scholar 

  29. Gasser, U.B., Walker, W.J., Dhalgren, R., Borch, R., Burau, R.: Lead release from smelter and mine waste impacted materials under simulated gastric conditions and relation to speciation. Environ. Sci. Technol. 30, 761–769 (1996)

    Article  Google Scholar 

  30. EA NEN 7371: Leaching characteristics of granular building and waste materials. The determination of the availability of inorganic components for leaching. The maximum availability leaching test. Based on a translation of the Netherlands Normalization Institute Standard. Version 1.0 (April 2005)

  31. NEN 7341: Leaching characteristics of solid (earthy and stony) building and waste materials. Leaching tests. Determination of the availability of inorganic components for leaching. Dutch Normalisation Institute. Version 1 (1995)

  32. NEN 7371: Leaching characteristics—determination of the availability of inorganic components for leaching—solid earthy and stony materials. Dutch Normalisation Institute. Version 1 (2004)

  33. CEN/TS 14997: Characterization of waste—leaching behaviour tests—influence of pH on leaching with continuous pH-control. CEN, Brussels, Belgium (2006)

  34. Dejonghe, L., Jans, D.: Les gisements plombo-zincifres de l’Est de la Belgique. Chron. Rech. Min. 51, 3–24 (1983)

    Google Scholar 

  35. Ladeuze, F., Dejonghe, L., Pauquet, F.: Historique de l’exploitation des gisements plombozincifères de l’Est de la Belgique: le rôle de la “Vieille-Montagne”. Chron. Rech. Min. 503, 37–50 (1991)

    Google Scholar 

  36. Dejonghe, L.: Zinc–lead deposits of Belgium. Ore Geol. Rev. 12, 329–354 (1998)

    Article  Google Scholar 

  37. Xhonneux-Reding, P.: La mine de Plombières. Paroisse Notre-Dame de l’Assomption (Plombières) 24, 3–15 (1966)

    Google Scholar 

  38. Cappuyns, V., Swennen, R., Vandamme, A., Niclaes, M.: Environmental impact of the former Pb–Zn mining and smelting in East-Belgium. J. Geochem. Explor. 88, 6–9 (2006)

    Article  Google Scholar 

  39. Coppola, V., Boni, M., Gilg, H.A., Balassone, G., Dejonghe, L.: The “calamine” nonsulfide Zn–Pb deposits of Belgium: petrographical, mineralogical and geochemical characterization. Ore Geol. Rev. 33, 187–210 (2008)

    Article  Google Scholar 

  40. Kucha, H., Martens, A., Ottenburgs, R., De Vos, W., Viaene, W.: Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombieres. Belgium. Environ. Geol. 27, 1–15 (1996)

    Article  Google Scholar 

  41. Nelson, D.W., Sommers, L.E.: Total carbon, organic carbon, and organic matter. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn, pp. 538–580. American Society of Agronomy, Madison (1982)

    Google Scholar 

  42. Chhabra, R., Pleysier, J., Cremers, A.:The measurement of the cation exchange capacity and exchangeable cations in soils: a newmethod.In: Proceedings of the International Clay Conference, Mexico City, July 16–23, Applied Publishing Ltd., Wilmette, IL, 1975, pp. 439–449

  43. Van Reeuwijk, L.P.: Procedures for soil analysis, 3rd edn. ISRIC, Wageningen (1992)

    Google Scholar 

  44. Van Herreweghe, S., Swennen, R., Cappuyns, V., Vandecasteele, C.: Speciation of heavy metals and metalloids in soils: an integrated study near former ore treatment plants with emphasis on pHstat-leaching. J. Geochem. Explor. 76, 113–138 (2002)

    Article  Google Scholar 

  45. Cappuyns, V., Swennen, R., Verhulst, J.: Assessment of acid neutralizing capacity and potential mobilization of trace metals from land-disposed dredged sediments. Sci. Total Environ. 333, 233–247 (2004)

    Article  Google Scholar 

  46. Brockhoff, C.A., Creed, J.T., Martin, T.D., Martin, E.R., Long, S.E.: EPA Method 200.8, Revision 5.5: Determination of trace metals in waters and wastes by inductively coupled plasma-mass spectrometry. EPA-821R-99-017 (1999)

  47. Vogel, A.I.:Nephelometric determination of sulfate. In: Longman (eds.) A Text-Book of Quantitative Inorganic Analysis, pp. 850–85. Green, London (1961)

  48. Jeffery, P.G.: Chemical methods of rock analysis, pp. 193–194. Pergamon Press, Oxford (1981)

    Google Scholar 

  49. Allison,J.D., Brown, D.S.,Novogradac, K.J.: MINTEQA2/PRODEFA2, A chemical assessment model for environmental systems: version 4.0 user’s manual. Environmental research laboratory office of research and development. US-EPA, Athens (1999)

  50. Gustavsson,J.P.:Visual MINTEQ: Version 2.50. Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm ttp://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm (2006)

  51. McAndrew, J.: Calibration of a Franz isodynamic separator and its application to mineral separation. Proc. Australas. Inst. Min. Metall. 181, 59–73 (1957)

    Google Scholar 

  52. Joint committee for powder diffraction (1991)

  53. Cappuyns, V., Swennen, R., Devivier, A.: Influence of ripening on pHstat leaching of heavy metals from dredged sediments. J. Environ. Monit. 6, 774–781 (2004)

    Article  Google Scholar 

  54. Schwarz, A., Wilcke, W., Zech, W.: Heavy metal release from batch pHstat experiments. Soil Sci. Soc. Am. J. 63, 290–296 (1999)

    Article  Google Scholar 

  55. VanBriesen, J.M.,Small, M.,Weber, C.,Wilson,J.:Modelling Chemical Speciation:Thermodynamics, Kinetics andUncertainty.In: Hanrahan, G. (ed.)Modelling of Pollutants in Complex Environmental Systems, Volume II, pp. 133–149. ILMPublications, a trading division of International Labmate Limited (2010)

  56. Sobanska, S., Ledésert, B., Deneele, D., Laboudigue, A.: Alteration in soils of slag particles resulting from lead smelting. Earth Planet. Sci. 331, 271–278 (2000)

    Google Scholar 

  57. Ettler, V., Komárková, M., Jehlička, J., Coufal, P., Hradil, D., Machovič, V., Delorme, F.: Leaching of lead metallurgical slag in citric solutions—implications for disposal and weathering in soil environments. Chemosphere 57, 567–577 (2004)

    Article  Google Scholar 

  58. Kock, D., Schippers, A.: Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl. Environ. Microbiol. 74, 5211–5219 (2008)

    Article  Google Scholar 

  59. Becerra-Castro, C., Monterroso, C., Prieto-Fernández, A., Rodríguez-Lamas, L., Loureiro-Viñas, M., Acea, M.J., Kidd, P.S.: Pseudometallophytescolonising Pb/Zn mine tailings: a description of the plant–microorganism–rhizospheresoilsystem and isolation of metal-tolerantbacteria.Original. J. Hazard. Mater. 217–218, 350–359 (2012)

    Article  Google Scholar 

  60. Petrisor, I.G., Dobrota, S., Komnitsas, K., Lazar, I., Kuperberg, J.M., Serban, M.: Artificial inoculation—Perspectives in tailings phytostabilization. Int. J. Phytorem. 6(1), 1–15 (2004)

    Article  Google Scholar 

  61. Mignardi, S., Corami, A., Ferrini, V.: Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere 86, 354–360 (2012)

    Article  Google Scholar 

  62. Nzihou, A., Sharrock, P.: Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste Biomass Valor. 1, 163–174 (2010)

    Article  Google Scholar 

  63. Liu, Y.G., Zhou, M., Zeng, G.M., Li, X., Xu, W.H., Fan, T.: Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J. Hazard. Mater. 141, 202–208 (2007)

    Article  Google Scholar 

  64. Abdelmalek-Babbou, C., Chaabani, F., Henchiri, A.: Application of the froth flotation chemical process for the environmental desulphurization. Sci. Acad. Trans. Renew. Energy Syst. Eng. Technol. (SATRESET) 1, 77–83 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cappuyns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappuyns, V., Alian, V., Vassilieva, E. et al. pH Dependent Leaching Behavior of Zn, Cd, Pb, Cu and As from Mining Wastes and Slags: Kinetics and Mineralogical Control. Waste Biomass Valor 5, 355–368 (2014). https://doi.org/10.1007/s12649-013-9274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9274-3

Keywords

Navigation