Skip to main content
Log in

Stabilisation and Microstructural Modification of Stainless Steel Converter Slag by Addition of an Alumina Rich By-Product

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work aimed to assess the possibility of stabilising argon oxygen decarburisation (AOD) stainless steel slag with CaO/SiO2 ~ 1.6, by using a secondary alumina by-product (~75 wt% Al2O3, referred herein as SA, found under the name “Valoxy®”) and reduced levels of B2O3. Two groups of samples were synthesised: one reference group with AOD slag and 0.26, 0.16, 0.10 and 0.05 wt% of B2O3 and one with equivalent compositions but to which 5 wt% of SA is added. Experimentally, the slags were produced in a platinum crucible in a resistance furnace, heated with 5 °C/min until 1,640 °C, equilibrated for 1 h, followed by slow cooling to room temperature. The mineralogical composition was analysed by QXRD whereas the micro-hardness was measured through a Vickers indentation test. The microchemistry and morphology were analysed by EPMA–WDS. Analysis indicated that AOD was successfully stabilised by 5 wt% SA and 0.10 wt% B2O3, whereas for 0.05 wt% B2O3, volumetric expansion occurred over time. In terms of mineralogy, the use of SA promoted the formation of spinel instead of gehlenite. Electron microscopy revealed a more dense morphology in the samples with SA when compared to the reference ones. Elemental maps indicated that Cr predominantly participates in the spinel phase. Vickers tests showed a slight increase in hardness in the samples with SA. In conclusion, the addition of SA resulted in substantially different microstructures that appear to be promising in terms of chemical and mechanical stability. However, in terms of volumes the required addition levels for effective stabilisation are substantial compared to B2O3 additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bridge, T.E.: Bredigite, larnite and dicalcium silicate from Marble Canyon. Am. Miner. 51, 1766–1774 (1966)

    Google Scholar 

  2. Guo, M., Durinck, D., Jones, P.T., Heylen, G., Hendrickx, R., Baeten, R., Blanpain, B., Wollants, P.: EAF stainless steel refining—part I: observational study on chromium recovery in an eccentric bottom tapping furnace and a spout tapping furnace. Steel Res. Int. 78(2), 117–124 (2007)

    Google Scholar 

  3. Taylor, H.F.W. (ed.): Cement Chemistry, 2nd edn. Academic Press, London (1990)

    Google Scholar 

  4. Pontikes, Y., Jones, P.T., Geysen, D., Blanpain, B.: Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Arch. Metall. Mater. 55(4), 1167–1172 (2010)

    Google Scholar 

  5. Park, J.H.: Solidification structure of CaO–SiO2–MgO–Al2O3 (–CaF2) systems and computational phase equilibria: crystallization of MgAl2O4 spinel. Calphad 31(4), 428–437 (2007)

    Article  Google Scholar 

  6. Engström, F.: Mineralogical Influence of Different Cooling Conditions on Leaching Behaviour of Steelmaking Slags. Luleå University of Technology, Luleå, Sweden (2007)

  7. Durinck, D., Engström, F., Arnout, S., Heulens, J., Jones, P.T., Björkman, B., Blanpain, B., Wollants, P.: Hot stage processing of metallurgical slags. Resour. Conserv. Recycl. 52(10), 1121–1131 (2008)

    Article  Google Scholar 

  8. Pontikes, Y., Kriskova, L., Wang, X., Geysen, D., Arnout, S., Nagels, E.: Additions of industrial residues for hot stage engineering of stainless steel slags. In: Jones, P., Pontikes, Y., Elsen, J., Cizer, Ö., Boehme, L., Van Gerven, T. (eds.) 2nd International Slag Valorisation Symposium, pp. 313–326. Leuven, Belgium (2011)

  9. Yoshinaga, J., Kida, A., Nakasugi, O.: Statistical approach for the source identification of boron in leachates from industrial landfills. J. Mater. Cycles Waste Manage. 3(1), 60–65 (2001)

    Google Scholar 

  10. http://www.scienceviews.com/geology/aluminum.html

  11. Tsakiridis, P.E.: Aluminium salt slag characterization and utilization—a review. J. Hazard Mater. 217–218, 1–10 (2012). doi:10.1016/j.jhazmat.2012.03.052

    Article  Google Scholar 

  12. Mudersbach, D., Kühn, M., Geisler, J., Koch, K.: Chrome immobilisation in EAF-slags from high-alloy steelmaking: tests at FEhS institute and development of an operational slag treatment process. In: Jones, P.T., Geysen, D., Guo, M., Blanpain, B. (eds.) First International Slag Valorisation Symposium. Leuven, Belgium (2009)

  13. García-Ramos, E., Romero-Serrano, A., Zeifert, B., Flores-Sanchez, P., Hallen-Lapez, M., Palacios, E.G.: Immobilization of chromium in slags using MgO and Al2O3. Steel Res. Int. 79(5), 332–339 (2008)

    Google Scholar 

  14. Galina Jelkina Albertsson: Investigations of Stabilization of Cr in Spinel Phase in Chromium-Containing Slags. KTH, Stockholm (2011)

    Google Scholar 

  15. Tossavainen, M., Forssberg, E.: Leaching behaviour of rock material and slag used in road construction—a mineralogical interpretation. Steel Res. 71(11), 442–448 (2000)

    Google Scholar 

  16. Stubbe, G., Harp, G., Sedlemeier, M.: New technology for recovery of chromium from EAF stainless steelmaking slag. In: Waste Recovery in Ironmaking and Steelmaking Processes. The Institute of Materials, Minerals and Mining, London (2010)

  17. www.rva-recycling.com. (Accessed in May 2013)

  18. Rietveld, H.M.: A method for including the line profiles of neutron powder diffraction peaks in the determination of crystal structures. Acta Crystallogr. 21, A228 (1966)

    Google Scholar 

  19. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  20. Coelho, A.A.: TOPAS-Academic; A Computer Programme for Rietveld Analysis. http://www.topas-academic.net/ (2004)

  21. Cheary, R.W., Coelho, A.A.: A fundamental parameters approach of X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992)

    Article  Google Scholar 

  22. Buhrke, V.E., Jenkins, R., Smith, D.K.: A practical guide for the preparation of specimens for X-ray fluorescence and X-ray diffraction analysis. Wiley-VCH, New York (1998)

    Google Scholar 

  23. Kumar, P., Sandhage, K.H: Near net-shaped magnesium aluminate spinel by the oxidation of solid magnesium-bearing precursors. Ceram. Trans. 94, 129–140 (1998)

    Google Scholar 

  24. Deer, W.A., Howie, R.A., Zussman, J.: Rock-forming minerals. In: Framework silicates : feldspars, vol. 4A, 2nd edn. Geological Society of London Pub. House, Bath (2001)

  25. Durinck, D., Arnout, S., Mertens, G., Boydens, E., Jones, P.T., Elsen, J., Blanpain, B., Wollants, P.: Borate distribution in stabilized stainless-steel slag. J. Am. Ceram. Soc. 91(2), 548–554 (2008)

    Article  Google Scholar 

  26. Craig J.R., Vaughan, D.J.: Ore microscopy and ore petrography—chapter 6. In: Quantitative Methods—Microindentation Hardness, 2nd edn. Wiley, New York (1994)

  27. Barthelmy, D.: Mineralogy Database. Online at http://webmineral.com

  28. http://www.liacs.nl/~jrijsdam/minerals/ (Accessed in November 2013)

  29. Kim, Y.-M., Hong, S.-H.: Influence of minor ions on the stability and hydration rates of β-dicalcium silicate. J. Am. Ceram. Soc. 87(5), 900–905 (2004). doi:10.1111/j.1551-2916.2004.00900.x

    Article  MathSciNet  Google Scholar 

  30. Ghosh, S.N., Rao, P.B., Paul, A.K., Raina, K.: Review. The chemistry of dicalcium silicate mineral. J. Mater. Sci. 14(7), 1554–1566 (1979)

    Article  Google Scholar 

  31. Juckes, L.M.: Dicalcium silicate in blast-furnace slag: A critical review of the implications for aggregate stability. Miner. Process. Extr. Metall. 111(3), 120–128 (2002)

    Google Scholar 

  32. Chan, C.J., Kriven, M.W., Young, J.F.: Physical stabilization of the β→γ transformation in dicalcium silicate. J. Am. Ceram. Soc. 75(6), 1621–1627 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of RVA, France is gratefully acknowledged as well as the active involvement of Mr. H. Epstein. The thermodynamic calculations were performed by E. Nagels, InsPyro NV. The EPMA–WDS work has been feasible due to the support of the Hercules Foundation (Project ZW09-09). Yiannis Pontikes is thankful to the Research Foundation-Flanders for the post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remus Ion Iacobescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacobescu, R.I., Malfliet, A., Machiels, L. et al. Stabilisation and Microstructural Modification of Stainless Steel Converter Slag by Addition of an Alumina Rich By-Product. Waste Biomass Valor 5, 343–353 (2014). https://doi.org/10.1007/s12649-013-9287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9287-y

Keywords

Navigation