Skip to main content

Advertisement

Log in

Kinetic Parameters Determination of Biomass Pyrolysis Fuels Using TGA and DTA Techniques

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A TG/DTG and DTA measurements are used to determine the kinetics of the thermal decomposition of two Egyptian biomasses (sugarcane bagasse and cotton stalks powders) at three heating rates of 10, 15 and 20 °C/min. Two distinct reaction zones were observed for the two biomasses. The direct Arrhenius plot method and integral method were applied to (TG/DTG) analysis for determination of kinetic parameters: activation energy, pre-exponential factor, and order of reaction. The weight loss curve showed that pyrolysis of sugarcane bagasse and cotton stalks took place mainly in the range of 200–500 °C. Also, the activation energy of a phase transition can be calculated directly from the DTA thermogram of each biomass material. Heating rates had little effect on the pyrolysis process, but the peak of the weight loss rate in the DTG curves shifted towards higher temperature with heating rate. The activation energy of the sugarcane bagasse powder obtained by the direct Arrhenius plot method are 48.25, 57.15 and 45.35 kJ/mol for the heat rate of 10, 15 and 20 °C/min, respectively. On the other side, the integral method shows larger values of the activation energy for sugarcane bagasse (82.5, 78.5 and 56.7 kJ/mol for the heat rate of 10, 15 and 20 °C/min, respectively). The activation energy of the cotton stalks powder obtained by the direct Arrhenius plot method are 100, 80 and 68 kJ/mol for the heat rate 10, 15 and 20 °C/min, respectively, but the integral method shows larger values of activation energy (100, 107 and 101 kJ/mol for the heat rate of 10, 15 and 20 °C/min, respectively). The calculated activation energy by DTA analysis was found to be 81.77 and 84.75 kJ/mol for sugarcane bagasse and cotton stalks, respectively. These values are, to some extent, in agreement with the data obtained by direct and integral methods. The cotton stalks are more reactive than the sugarcane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Demirbas, M.F., Balat, M.: Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Convers. Manag. 47, 2371–2381 (2006)

    Article  Google Scholar 

  2. Cantrell, K.B., Ducey, T., Ro, K.S., Hunt, P.G.: Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 99, 7941–7953 (2008)

    Article  Google Scholar 

  3. Aboulkas, A., El Harfi, K.: Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J. Therm. Anal. Calorim. 95, 1007–1013 (2009)

    Article  Google Scholar 

  4. Huang, H., Wang, K., Wang, S., Klein, M.T., Calkins, W.H.: Kinetics of coal liquefaction at very short reaction times. Energy Fuels 10, 641–648 (1996)

    Article  Google Scholar 

  5. Noisong, P., Danvirutai, C., Boonchom, B.: Thermodynamic and kinetic properties of the formation of Mn2P2O7 by thermal decomposition of Mn(H2PO2)2H2O. J. Chem. Eng. Data 54, 871–875 (2009)

    Article  Google Scholar 

  6. Ergudenler, A., Ghaly, A.E.: Determination of reaction kinetics of wheat straw using thermogravimetric analysis. Appl. Biochem. Biotechnol. 34–35, 75–81 (1992)

    Article  Google Scholar 

  7. Bining, A.S., Jenkins, B.M.: Thermochemical reaction kinetics for rice straw from an approximate integral technique, ASAE Paper No. 92–6029 (1992)

  8. Drescher, E.A., Bassil, C.A., Rolinski, E.J.: In: TN Veziroglu (ed) The kinetics of the thermal decomposition of Green River oil shale by thermogravimetric analysis, Alternative energy sources V, Part D, Elsevier Science Publishers, Amsterdam (1983)

  9. Rajeshwar, K.: The kinetics of the thermal decomposition of green river oil-shale kerogen by nonisothermal thermogravimetry. Thermochim. Acta 45, 253–263 (1981)

    Article  Google Scholar 

  10. Haddadin, R.A., Mizyed, F.A.: Thermogravimetric analysis kinetics of Jordan oil-shale. Ind. Eng. Chem. Process Design Dev. 13, 332–336 (1974)

    Article  Google Scholar 

  11. Dogan, O.M., Uysel, B.Z.: Non-isothermal pyrolysis kinetics of three Turkish oil-shales. Fuel 75, 1424–1428 (1996)

    Article  Google Scholar 

  12. Wilson, L., Yang, W., Blasiak, W., John, G.R., Mhilu, C.F.: Thermal characterization of tropical biomass feedstocks. Energy Convers. Manag. 52, 191–198 (2011)

    Article  Google Scholar 

  13. Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M.: Thermal analysis and devolatilization kinetics of cotton stalks, sugarcane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100, 1413–1418 (2009)

    Article  Google Scholar 

  14. Akinwale, O.A., Thomas, J.H., Marion, C., Edson, L.M., Ralph, S., Johannes, H.K., Johann, F.G.: Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim. Acta 517, 81–89 (2011)

    Article  Google Scholar 

  15. Ayokunle, O.B., Olumuyiwa, A.L., Hui, L., Armando, G.M.: Fourier transform infrared (FTIR) study and thermal decomposition kinetics of sorghum bicolour glume and albizia pedicellaris residues. Waste Biomass Valorization 6, 109–116 (2015)

    Article  Google Scholar 

  16. Boycheva, S., Zgureva, D., Vassilev, V.: Kinetic and thermodynamic studies on the thermal behaviour of fly ash from lignite coals. Fuel 108, 639–646 (2013)

    Article  Google Scholar 

  17. El-Sayed, S.A., Mostafa, M.E.: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers. Manag. 85, 165–172 (2014)

    Article  Google Scholar 

  18. Sophie, D., Mejdi, J., Gwenaelle, T.: Thermal degradation of miscanthus pellets: kinetics and aerosols characterization. Waste Biomass Valorization 2, 149–155 (2011)

    Article  Google Scholar 

  19. Bhavya, B., Thallada, B., Hari, B.G., Dilip, K.A.: Hydropyrolysis of jatropha seed de-oiled cake: estimation of kinetic parameters. Waste Biomass Valorization 4, 503–507 (2013)

    Article  Google Scholar 

  20. Jenkins, B.M., Ebeling, J.M.: Correlation of physical properties of terrestrial biomass with conversion. In: Proceedings of energy from biomass and wastes IX, Institute of Gas Technology, Chicago, IL (1985)

  21. Knoetze, J.H., Görgens, J.F.: Thomas Johannes Hugo, Pyrolysis of sugarcane bagasse, Department of Process Engineering at the University of Stellenbosch, Msc Thesis (2010)

  22. Luo, S., Liu, C., Xiao, B., Xiao, L.: A novel biomass pulverization technology. Renew. Energy 36, 578–582 (2011)

    Article  Google Scholar 

  23. Sanchez-Silva, L., Lopez-Gonzalez, D., Villasenor, J., Sanchez, P., Valverde, J.L.: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour. Technol. 109, 163–172 (2012)

    Article  Google Scholar 

  24. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  25. Roque-Diaz, P., University, C., Villas, L., Shemet, C., Lavrenko, V.A., Khristich, V.A.: Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions. Thermochim. Acta 93, 349–352 (1985)

    Article  Google Scholar 

  26. Sonobe, T., Worasuwannarak, N., Pipatmanomai, S.: Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol. 89, 1371–1378 (2008)

    Article  Google Scholar 

  27. Biagini, E., Barontini, F., Tognotti, L.: Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind. Eng. Chem. Res. 45, 4486–4493 (2006)

    Article  Google Scholar 

  28. Ma, F., Zeng, Y., Wang, J., Yang, Y., Yang, X., Zhang, X.: “Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model. Bioresour. Technol. 128, 417–422 (2013)

    Article  Google Scholar 

  29. Aboulkas, A., El Harfi, K., El Bouadili, A., Chanaa, M.B., Mokhlisse, A.: Pyrolysis kinetics of polypropylene morocco oil shale and their mixture. J. Therm. Anal. Calorim. 89, 203–209 (2007)

    Article  Google Scholar 

  30. Deng, N., Zhang, Y., Wang, Y.: Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Waste Manag 28, 1572–1580 (2008)

    Article  Google Scholar 

  31. Antal, M.J., Varhegyi, G.: Cellulose pyrolysis kinetics: the current state of knowledge. Ind. Eng. Chem. Res. 34, 703–717 (1995)

    Article  Google Scholar 

  32. Kumar, A., Wang, L., Dzenis, Y.A., Jones, D.D., Hanna, M.A.: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 32, 460–467 (2008)

    Article  Google Scholar 

  33. Williams, P.T., Ahmad, N.: Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energy 66, 113–133 (2000)

    Article  Google Scholar 

  34. Elbeyli, I.Y.: Pyrolysis kinetics of asphaltite by thermal analysis. Pet. Sci. Technol. 24, 1233–1242 (2006)

    Article  Google Scholar 

  35. Rajeshwar, K.: Thermal analysis of coals, oil-shales and oil sands. Thermochim. Acta 63, 97–112 (1983)

    Article  Google Scholar 

  36. Thilakavathi, M., Pulikesi, M., Jalal, A., Nader, M.: Pyrolysis of wheat straw in a thermogravimetr ic analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics, 88, 952–958 (2010)

  37. Ramajo-Escalera, B., Espina, A., García, J.R., Sosa-Arnao, J.H., Nebra, S.A.: Model-free kinetics applied to sugarcane bagasse combustion. Thermochim. Acta 448, 111–116 (2006)

    Article  Google Scholar 

  38. Putun, A.E.: Biomass to bio-oil via fast pyrolysis of cotton straw and stalk. Energy Sources 24, 275–285 (2002)

    Article  Google Scholar 

  39. White, D.H., Coates, W.E., Wolf, D.: Conversion of cotton plant and cotton gin residues to fuels by the extruder–feeder liquefaction process. Bioresour. Technol. 56, 117–123 (1996)

    Article  Google Scholar 

  40. Mckendry, P.: Energy production from biomass (part1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002)

    Article  Google Scholar 

  41. Nassar, M.M., Ashour, E.A., Wahid, S.S.: Thermal characteristics of bagasse. J. Appl. Polym. Sci. 61, 885–890 (1996)

    Article  Google Scholar 

  42. Asadieraghia, M., Mohd Ashri Wan Daud, W.: Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers. Manag. 82, 71–82 (2014)

    Article  Google Scholar 

  43. Vleeskens, J.M., Nandi, B.N.: Burnout of coals: comparative bench scale experiments on pulverized fuel and fluidized bed combustion. Fuel 65, 797–802 (1986)

    Article  Google Scholar 

  44. Rostam-Abadi, M., Debarr, J.A., Chen, W.T.: Combustion studies of coal derived solid fuels by thermogravimetric analysis III: correlation between burnout temperature and carbon combustion efficiency. Thermochim. Acta 166, 351–356 (1990)

    Article  Google Scholar 

  45. Moghtaderi, B.A.: Study on the char burnout characteristics of coal and biomass blends. Fuel 86, 2431–2438 (2007)

    Article  Google Scholar 

  46. Coats, A.W., Redfern, J.P.: Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)

    Article  Google Scholar 

  47. Aiman, S., Stubington, J.F.: The pyrolysis kinetics of bagasse at low heating rates. Biomass Bioenergy 5, 113–120 (1993)

    Article  Google Scholar 

  48. Simkovic, I., Csomorova, K.: Thermogravimetric analysis of agricultural residues: oxygen effect and environmental impact. J. Appl. Polym. Sci. 100, 1318–1322 (2006)

    Article  Google Scholar 

  49. Kalita, P., Mohan, G., Pradeep Kumar, G., Mahanta, P.: Determination and comparison of kinetic parameters of low density biomass fuels. J. Renew. Sustain. Energy 1, 109 (2009)

    Article  Google Scholar 

  50. Vimal, R.P., Rajesh, N.P., Vandana, J.R.: Kinetic parameter estimation of lignite by thermo-gravimetric analysis. Procedia Eng. 51, 727–734 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad A. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, S.A., Mostafa, M.E. Kinetic Parameters Determination of Biomass Pyrolysis Fuels Using TGA and DTA Techniques. Waste Biomass Valor 6, 401–415 (2015). https://doi.org/10.1007/s12649-015-9354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9354-7

Keywords

Navigation