Skip to main content
Log in

Recent Advances in Sugarcane Industry Solid By-Products Valorization

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sugarcane is among the leading agricultural crop cultivated in tropical regions of the world. Industrial processing of sugarcane generates sugar; as well as various solid wastes (i.e. sugarcane bagasse, pressmud). Improvement of biotechnology in industrial level, offers opportunities for economic utilization of these solid residues. In the last few decades, sugarcane bagasse and pressmud have been explored in the theme of lignocellulosic bioconversion. The recalcitrance of biomass is a major drawback towards successful exploitation of lignocellulosic residues. Pretreatment by suitable/efficient processes can overcome this limitation. In this regards; physical, chemical and biological treatment systems are brought into our perspective. Chemical and physicochemical methods are capital-intensive but not environment-friendly, in contrast, method like biological treatment is eco-friendly but extremely slow. There are still major technological and economic challenges need to be addressed; e.g. bioprospecting, established more reliable genetically modified microorganisms, upgrade gene cloning and sequencing processes, yield improvement at large scale etc. Productions of value-added products from these solid wastes are discussed in such a way that pinpoints the most recent trends and the future directions. Biofuels, enzymes, organic acids and bio-sorbents production draw a clear sketch of the current and future bio-based products. Nano-biotechnology and genetic engineering could be future trends to improved processes and products. This review serves as a valuable reference material for a wide range of scientists and technologists in the relevant fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chandel, A.K., Singh, O.V.: Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of “Biofuel”. Appl. Microbiol. Biotechnol. 89(5), 1289–1303 (2011)

    Article  Google Scholar 

  2. Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P.: Feedstocks for lignocellulosic biofuels. Science 329(5993), 790–792 (2010)

    Article  Google Scholar 

  3. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T.: Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74(1), 69–80 (2000)

    Article  Google Scholar 

  4. Chandel, A.K., da Silva, S.S., Carvalho, W., Singh, O.V.: Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 87(1), 11–20 (2012)

    Article  Google Scholar 

  5. Martín, C., Galbe, M., Nilvebrant, N.-O., Jönsson, L.J.: Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl. Biochem. Biotechnol. 98(1–9), 699–716 (2002)

    Article  Google Scholar 

  6. Maitan-Alfenas, G.P., Visser, E.M., Guimarães, V.M.: Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr. Opin. Food Sci. 1, 44–49 (2015)

    Article  Google Scholar 

  7. Bhatnagar, A., Kesari, K.K., Shurpali, N.: Multidisciplinary approaches to handling wastes in sugar industries. Water Air Soil Pollut. 227(1), 1–30 (2016)

    Article  Google Scholar 

  8. Balakrishnan, M., Batra, V.S.: Valorization of solid waste in sugar factories with possible applications in India: a review. J. Environ. Manage. 92(11), 2886–2891 (2011)

    Article  Google Scholar 

  9. Solomon, S.: Sugarcane by-products based industries in India. Sugar Tech 13(4), 408–416 (2011)

    Article  Google Scholar 

  10. Nava-Valente, N., Alvarado-Lassman, A., Nativitas-Sandoval, L.S., Mendez-Contreras, J.M.: Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): effect on organic matter solubilization, biodegradability and bioenergy production. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 51(5), 446–453 (2016)

    Article  Google Scholar 

  11. Liu, Y., Zhang, Y., Xu, J., Sun, Y., Yuan, Z., Xie, J.: Consolidated bioprocess for bioethanol production with alkali-pretreated sugarcane bagasse. Appl. Energy 157, 517–522 (2015)

    Article  Google Scholar 

  12. Wei, D., Liu, X., Yang, S.-T.: Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour. Technol. 129, 553–560 (2013)

    Article  Google Scholar 

  13. Veana, F., Martínez-Hernández, J.L., Aguilar, C.N., Rodríguez-Herrera, R., Michelena, G.: Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz. J. Microbiol. 45(2), 373–377 (2014)

    Article  Google Scholar 

  14. Moubarik, A., Grimi, N.: Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Res. Int. 73, 169–175 (2015)

    Article  Google Scholar 

  15. Bhat, S.A., Singh, J., Vig, A.P.: Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus 4(1), 11 (2015)

    Article  Google Scholar 

  16. Mtui, G.Y.S.: Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 8(8), 1398–1415 (2009)

  17. Canilha, L., Chandel, A.K., Suzane dos Santos Milessi, T., Antunes, F.A.F., Luiz da Costa Freitas, W., das Graças Almeida Felipe, M., da Silva, S.S.: Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. BioMed Res. Int. 2012, 1–15 (2012)

  18. Rubin, E.M.: Genomics of cellulosic biofuels. Nature 454(7206), 841–845 (2008)

    Article  Google Scholar 

  19. Martin, C., Klinke, H.B., Thomsen, A.B.: Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb. Technol. 40(3), 426–432 (2007)

    Article  Google Scholar 

  20. Zhao, X., Cheng, K., Liu, D.: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82(5), 815–827 (2009)

    Article  Google Scholar 

  21. Carvalheiro, F., Duarte, L.C., Gírio, F.M.: Hemicellulose biorefineries: a review on biomass pretreatments. J. Sci. Ind. Res. 67(11), 849–864 (2008)

    Google Scholar 

  22. Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Biorefin. 2(1), 26–40 (2008)

    Article  Google Scholar 

  23. Galbe, M., Zacchi, G.: Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels, pp. 41–65. Springer, Berlin (2007)

    Chapter  Google Scholar 

  24. Ramadoss, G., Muthukumar, K.: Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochem. Eng. J. 83, 33–41 (2014)

    Article  Google Scholar 

  25. da Silva, A.S.A., Inoue, H., Endo, T., Yano, S., Bon, E.P.S.: Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101(19), 7402–7409 (2010)

    Article  Google Scholar 

  26. Buaban, B., Inoue, H., Yano, S., Tanapongpipat, S., Ruanglek, V., Champreda, V., Pichyangkura, R., Rengpipat, S., Eurwilaichitr, L.: Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J. Biosci. Bioeng. 110(1), 18–25 (2010)

    Article  Google Scholar 

  27. Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H.: Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation. Bioresour. Technol. 196, 194–199 (2015)

    Article  Google Scholar 

  28. Janke, L., Leite, A., Batista, K., Weinrich, S., Sträuber, H., Nikolausz, M., Nelles, M., Stinner, W.: Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment. Bioresour. Technol. 199, 235–244 (2016)

    Article  Google Scholar 

  29. Hernández-Salas, J.M., Villa-Ramírez, M.S., Veloz-Rendón, J.S., Rivera-Hernández, K.N., González-César, R.A., Plascencia-Espinosa, M.A., Trejo-Estrada, S.R.: Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour. Technol. 100(3), 1238–1245 (2009)

    Article  Google Scholar 

  30. Ramos, L.P., da Silva, L., Ballem, A.C., Pitarelo, A.P., Chiarello, L.M., Silveira, M.H.L.: Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour. Technol. 175, 195–202 (2015)

    Article  Google Scholar 

  31. González, L.M.L., Reyes, I.P., Dewulf, J., Budde, J., Heiermann, M., Vervaeren, H.: Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresour. Technol. 169, 284–290 (2014)

    Article  Google Scholar 

  32. Martin, C., Marcet, M., Thomsen, A.B.: Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. BioResources 3(3), 670–683 (2008)

    Google Scholar 

  33. Camassola, M., Dillon, A.J.P.: Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind. Crops Prod. 29(2), 642–647 (2009)

    Article  Google Scholar 

  34. Contreras, A.M., Rosa, E., Perez, M., Van Langenhove, H., Dewulf, J.: Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J. Clean. Prod. 17(8), 772–779 (2009)

    Article  Google Scholar 

  35. Cerqueira, D.A., Rodrigues Filho, G., da Silva Meireles, C.: Optimization of sugarcane bagasse cellulose acetylation. Carbohydr. Polym. 69(3), 579–582 (2007)

    Article  Google Scholar 

  36. Paixão, S.M., Ladeira, S.A., Arez, B.F., Martins, M.L.L., Roseiro, J.C., Alves, L.M.: KOH for enhanced sugarcane bagasse delignification and further production of sugar-rich hydrolyzates by enzymes application. In: RRB’10—10th International Conference on Renewable Resources and Biorefineries, Valladolid, Spain, pp. 71–72 (2014)

  37. Rezende, C.A., de Lima, M.A., Maziero, P., Ribeirode Azevedo, E., Garcia, W., Polikarpov, I.: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels 4(1), 1 (2011)

    Article  Google Scholar 

  38. Cheng, J., Zhu, M.: A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour. Technol. 144, 623–631 (2013)

    Article  Google Scholar 

  39. Botha, T., Von Blottnitz, H.: A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy 34(17), 2654–2661 (2006)

    Article  Google Scholar 

  40. Goh, C.S., Tan, K.T., Lee, K.T., Bhatia, S.: Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour. Technol. 101(13), 4834–4841 (2010)

    Article  Google Scholar 

  41. Mussatto, S.I., Dragone, G., Rocha, G.J.M., Roberto, I.S.C.: Optimum operating conditions for brewer’s spent grain soda pulping. Carbohydr. Polym. 64(1), 22–28 (2006)

    Article  Google Scholar 

  42. Petit, A.: Application of vacuum belt press filters for cane mud filtration and performance comparison with rotary filters. Sugar Ind. Zuckerind. 139(5), 298–301 (2014)

    Google Scholar 

  43. Agrawal, K.M., Barve, B.R., Khan, S.S.: Biogas from press mud. J. Mech. Civil Eng. 37–41 (2010)

  44. Cifuentes, R., de León, R., Porres, C., Rolz, C.: Windrow composting of waste sugar cane and press mud mixtures. Sugar Tech 15(4), 406–411 (2013)

    Article  Google Scholar 

  45. Nyonje, E.O., Njogu, P., Kinyua, R.: Assessment of the potential for utilization of sugarcane derived press mud for biogas generation in South Nyanza sugarcane zones, Kenya. In: Proceedings of Sustainable Research and Innovation Conference, pp. 48–51 (2014)

  46. Ansari, K.B., Gaikar, V.G.: Pressmud as an alternate resource for hydrocarbons and chemicals by thermal pyrolysis. Ind. Eng. Chem. Res. 53(5), 1878–1889 (2014)

    Article  Google Scholar 

  47. Kumar, R., Kesavapillai, B.: Stimulation of extracellular invertase production from spent yeast when sugarcane pressmud used as substrate through solid state fermentation. Springerplus 1(1), 1–6 (2012)

    Article  Google Scholar 

  48. López González, L.M., Reyes, I.P., Romero Romero, O., Budde, J.R., Heiermann, M., Vervaeren, H.: Antagonistic effects on the methane yield of liquid hot-water pretreated press mud fractions co-digested with vinasse. Energy Fuels 29(11), 7284–7289 (2015)

    Article  Google Scholar 

  49. Sarker, T.C., Mannan, M.A., Sayeed, M.A., Alam, M.F.: Bioconversion of sugar cane industry by-product using bacterial strains. J. Chem. Phys. Biol. Sci. Sect. D 5(4), 4707–4717 (2015)

    Google Scholar 

  50. Partha, N., Sivasubramanian, V.: Recovery of chemicals from pressmud—a sugar industry waste. Indian Chem. Eng. 48(3), 160–163 (2006)

    Google Scholar 

  51. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009)

    Article  Google Scholar 

  52. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9(9), 1621–1651 (2008)

    Article  Google Scholar 

  53. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83(1), 1–11 (2002)

    Article  Google Scholar 

  54. Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., Sawayama, S.: Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour. Technol. 100(10), 2706–2711 (2009)

    Article  Google Scholar 

  55. Sambusiti, C., Licari, A., Solhy, A., Aboulkas, A., Cacciaguerra, T., Barakat, A.: One-pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse. Bioresour. Technol. 181, 200–206 (2015)

    Article  Google Scholar 

  56. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Li, H., Gao, M.: The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 97(15), 1964–1968 (2006)

    Article  Google Scholar 

  57. de Souza Moretti, M.M., Bocchini-Martins, D.A., Nunes, C.D.C.C., Villena, M.A., Perrone, O.M., da Silva, R., Boscolo, M., Gomes, E.: Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl. Energy 122, 189–195 (2014)

    Article  Google Scholar 

  58. Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014)

    Article  Google Scholar 

  59. Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A.: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34(2), 421–424 (2009)

    Article  Google Scholar 

  60. Zhao, Y., Wang, Y., Zhu, J.Y., Ragauskas, A., Deng, Y.: Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng. 99(6), 1320–1328 (2008)

    Article  Google Scholar 

  61. Martín, C., Thomsen, A.B.: Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J. Chem. Technol. Biotechnol. 82(2), 174–181 (2007)

    Article  Google Scholar 

  62. Torre, P., Aliakbarian, B., Rivas, B., DomÃnguez, J.M., Converti, A.: Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem. Eng. J. 40(3), 500–506 (2008)

    Article  Google Scholar 

  63. Kumari, S., Das, D.: Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Bioresour. Technol. 194, 354–363 (2015)

    Article  Google Scholar 

  64. Borges, E.R., Pereira Jr., N.: Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J. Ind. Microbiol. Biotechnol. 38(8), 1001–1011 (2011)

    Article  Google Scholar 

  65. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  66. de Moraes Rocha, G.J., Martin, C., Soares, I.B., Maior, A.M.S., Baudel, H.M., De Abreu, C.A.M.: Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy 35(1), 663–670 (2011)

    Article  Google Scholar 

  67. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101(13), 4851–4861 (2010)

    Article  Google Scholar 

  68. Zhao, X., Peng, F., Cheng, K., Liu, D.: Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali—peracetic acid pretreatment. Enzyme Microb. Technol. 44(1), 17–23 (2009)

    Article  Google Scholar 

  69. Zhao, X., Wu, R., Liu, D.: Production of pulp, ethanol and lignin from sugarcane bagasse by alkali-peracetic acid delignification. Biomass Bioenergy 35(7), 2874–2882 (2011)

    Article  Google Scholar 

  70. Hendriks, A., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009)

    Article  Google Scholar 

  71. Da Cruz, S.H., Dien, B.S., Nichols, N.N., Saha, B.C., Cotta, M.A.: Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF. J. Ind. Microbiol. Biotechnol. 39(3), 439–447 (2012)

    Article  Google Scholar 

  72. Yu, Q., Zhuang, X., Wang, Q., Qi, W., Tan, X., Yuan, Z.: Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresour. Technol. 116, 220–225 (2012)

    Article  Google Scholar 

  73. Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J., Lynd, L.R.: A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 81(1), 33–44 (2002)

    Article  Google Scholar 

  74. Gurgel, L.V.A., Pimenta, M.T.B., da Silva Curvelo, A.A.: Enhancing liquid hot water (LHW) pretreatment of sugarcane bagasse by high pressure carbon dioxide (HP-CO 2). Ind. Crops Prod. 57, 141–149 (2014)

    Article  Google Scholar 

  75. McWilliams, R.C., Van Walsum, G.P.: Comparison of aspen wood hydrolysates produced by pretreatment with liquid hot water and carbonic acid. Biotechnology for fuels and chemicals, pp. 109–121. Springer, Berlin (2002)

    Chapter  Google Scholar 

  76. Van Walsum, G. P. Severity function describing the hydrolysis of xylan using carbonic acid. In: Twenty-Second Symposium on Biotechnology for Fuels and Chemicals, Springer, pp. 317–329, (2001)

  77. Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., Qi, W., Wang, Q., Wang, W., Tan, X.: Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour. Technol. 129, 592–598 (2013)

    Article  Google Scholar 

  78. Yu, Q., Zhuang, X., Yuan, Z., Qi, W., Wang, W., Wang, Q., Tan, X.: Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia. Bioresour. Technol. 144, 210–215 (2013)

    Article  Google Scholar 

  79. van Walsum, G.P., Shi, H.: Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour. Technol. 93(3), 217–226 (2004)

    Article  Google Scholar 

  80. Mosier, N., Hendrickson, R., Dreschel, R., Dien, B., Bothast, R., Welch, G., Ladisch, M: Principles and economics of pretreating cellulose in water for ethanol production. In: Proceedings of the 225th American Chemical Society Meeting, BIOT Division (2003)

  81. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29(6), 675–685 (2011)

    Article  Google Scholar 

  82. Oliveira, F.M.V., Pinheiro, I.O., Souto-Maior, A.M., Martin, C., Gonçalves, A.R., Rocha, G.J.M.: Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour. Technol. 130, 168–173 (2013)

    Article  Google Scholar 

  83. Geddes, C.C., Mullinnix, M.T., Nieves, I.U., Peterson, J.J., Hoffman, R.W., York, S.W., Yomano, L.P., Miller, E.N., Shanmugam, K.T., Ingram, L.O.: Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour. Technol. 102(3), 2702–2711 (2011)

    Article  Google Scholar 

  84. Rocha, G.J.M., Gonçalves, A.R., Oliveira, B.R., Olivares, E.G., Rossell, C.E.V.: Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crops Prod. 35(1), 274–279 (2012)

    Article  Google Scholar 

  85. Rocha, G.J.M., Martín, C., da Silva, V.F.N., Gómez, E.O., Gonçalves, A.R.: Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111, 447–452 (2012)

    Article  Google Scholar 

  86. Palonen, H., Thomsen, A.B., Tenkanen, M., Schmidt, A.S., Viikari, L.: Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotechnol. 117(1), 1–17 (2004)

    Article  Google Scholar 

  87. Fox, M., Noike, T.: Wet oxidation pretreatment for the increase in anaerobic biodegradability of newspaper waste. Bioresour. Technol. 91(3), 273–281 (2004)

    Article  Google Scholar 

  88. Laureano-Perez, L., Teymouri, F., Alizadeh, H., Dale, B.E.: Understanding factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 124(1–3), 1081–1099 (2005)

    Article  Google Scholar 

  89. Chundawat, S.P.S., Venkatesh, B., Dale, B.E.: Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96(2), 219–231 (2007)

    Article  Google Scholar 

  90. Krishnan, C., Sousa, L.D.C., Jin, M., Chang, L., Dale, B.E., Balan, V.: Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol. Bioeng. 107(3), 441–450 (2010)

    Article  Google Scholar 

  91. Aita, G.A., Salvi, D.A., Walker, M.S.: Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour. Technol. 102(6), 4444–4448 (2011)

    Article  Google Scholar 

  92. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y.: Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour. Technol. 96(18), 2026–2032 (2005)

    Article  Google Scholar 

  93. Eggeman, T., Elander, R.T.: Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96(18), 2019–2025 (2005)

    Article  Google Scholar 

  94. Zheng, Y., Pan, Z., Zhang, R.: Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2(3), 51–68 (2009)

    Google Scholar 

  95. Sánchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27(2), 185–194 (2009)

    Article  Google Scholar 

  96. Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: an overview. Renew. Energy 37(1), 19–27 (2012)

    Article  Google Scholar 

  97. Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., Shrivastava, A.K.: Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J. Microbiol. Biotechnol. 24(5), 667–673 (2008)

    Article  Google Scholar 

  98. Hamelinck, C.N., Van Hooijdonk, G., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28(4), 384–410 (2005)

    Article  Google Scholar 

  99. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.-F., Lidén, G., Zacchi, G.: Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549–556 (2006)

    Article  Google Scholar 

  100. Yu, Q., Xu, C., Zhuang, X., Yuan, Z., He, M., Zhou, G.: Xylo-oligosaccharides and ethanol production from liquid hot water hydrolysate of sugarcane bagasse. BioResources 10(1), 30–40 (2015)

    Article  Google Scholar 

  101. Rattanapoltee, P., Kaewkannetra, P.: Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Appl. Biochem. Biotechnol. 173(6), 1495–1510 (2014)

    Article  Google Scholar 

  102. Gupta, A., Verma, J.P.: Sustainable bio-ethanol production from agro-residues: a review. Renew. Sustain. Energy Rev. 41, 550–567 (2015)

    Article  Google Scholar 

  103. Khatiwada, D., Leduc, S., Silveira, S., McCallum, I.: Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew. Energy 85, 371–386 (2016)

    Article  Google Scholar 

  104. Cardona, C.A., Quintero, J.A., Paz, I.C.: Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101(13), 4754–4766 (2010)

    Article  Google Scholar 

  105. Shen, F., Hu, J., Zhong, Y., Liu, M.L.Y., Saddler, J.N., Liu, R.: Ethanol production from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic hydrolysis. Biomass Bioenergy 41, 157–164 (2012)

    Article  Google Scholar 

  106. da Silva Martins, L.H., Rabelo, S.C., da Costa, A.C.: Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour. Technol. 191, 312–321 (2015)

    Article  Google Scholar 

  107. Huang, Y., Qin, X., Luo, X.-M., Nong, Q., Yang, Q., Zhang, Z., Gao, Y., Lv, F., Chen, Y., Yu, Z.: Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 77, 53–63 (2015)

    Article  Google Scholar 

  108. Liu, Y., Xu, J., Zhang, Y., Yuan, Z., He, M., Liang, C., Zhuang, X., Xie, J.: Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 90, 1199–1205 (2015)

    Article  Google Scholar 

  109. Capecchi, L., Galbe, M., Barbanti, L., Wallberg, O.: Combined ethanol and methane production using steam pretreated sugarcane bagasse. Ind. Crops Prod. 74, 255–262 (2015)

    Article  Google Scholar 

  110. Taherzadeh, M.J., Karimi, K.: Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4), 707–738 (2007)

    Google Scholar 

  111. Giese, E.C., Chandel, A.K., Oliveira, I.S., Silva, S.S., Gonzalves, J.F., Correa, K.D.: Prospects for the bioethanol production from sugarcane feedstock: focus on Brazil. Nova Science Publishers, New York, NY, USA (2011)

    Google Scholar 

  112. Lin, Y., Tanaka, S.: Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69(6), 627–642 (2006)

    Article  Google Scholar 

  113. Antunes, F.A.F., Chandel, A.K., Milessi, T.S.S., Santos, J.C., Rosa, C.A., da Silva, S.S.: Bioethanol production from sugarcane bagasse by a novel Brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int. J. Chem. Eng. 2014 (Article ID 180681), 8 (2014)

  114. Chandra, R., Takeuchi, H., Hasegawa, T.: Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 16(3), 1462–1476 (2012)

    Article  Google Scholar 

  115. Moraes, B.S., Zaiat, M., Bonomi, A.: Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew. Sustain. Energy Rev. 44, 888–903 (2015)

    Article  Google Scholar 

  116. Karellas, S., Boukis, I., Kontopoulos, G.: Development of an investment decision tool for biogas production from agricultural waste. Renew. Sustain. Energy Rev. 14(4), 1273–1282 (2010)

    Article  Google Scholar 

  117. Janke, L., Leite, A., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., Stinner, W.: Biogas production from sugarcane waste: assessment on kinetic challenges for process designing. Int. J. Mol. Sci. 16(9), 20685–20703 (2015)

    Article  Google Scholar 

  118. Taherzadeh, M.J., Karimi, K.: Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3), 472–499 (2007)

    Google Scholar 

  119. Kurakake, M., Ide, N., Komaki, T.: Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr. Microbiol. 54(6), 424–428 (2007)

    Article  Google Scholar 

  120. De Paoli, F., Bauer, A., Leonhartsberger, C., Amon, B., Amon, T.: Utilization of by-products from ethanol production as substrate for biogas production. Bioresour. Technol. 102(11), 6621–6624 (2011)

    Article  Google Scholar 

  121. Rouf, M.A., Bajpai, P.K., Jotshi, C.K.: Optimization of biogas generation from press mud in batch reactor. Bangladesh J. Sci. Ind. Res. 45(4), 371–376 (2010)

    Google Scholar 

  122. Börjesson, P., Mattiasson, B.: Biogas as a resource-efficient vehicle fuel. Trends Biotechnol. 26(1), 7–13 (2008)

    Article  Google Scholar 

  123. Rabelo, S.C., Carrere, H., MacielFilho, R., Costa, A.C.: Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour. Technol. 102(17), 7887–7895 (2011)

    Article  Google Scholar 

  124. Baêta, B.E.L., Lima, D.R.S., Balena Filho, J.G., Adarme, O.F.H., Gurgel, L.V.A., de Aquino, S.F.: Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Bioresour. Technol. 218, 436–446 (2016)

    Article  Google Scholar 

  125. Lai, Z., Zhu, M., Yang, X., Wang, J., Li, S.: Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. Biotechnol. Biofuels 7(1), 1 (2014)

    Article  Google Scholar 

  126. Urbaniec, K., Bakker, R.R.: Biomass residues as raw material for dark hydrogen fermentation—a review. Int. J. Hydrogen Energy 40(9), 3648–3658 (2015)

    Article  Google Scholar 

  127. Hallenbeck, P.C., Abo-Hashesh, M., Ghosh, D.: Strategies for improving biological hydrogen production. Bioresour. Technol. 110, 1–9 (2012)

    Article  Google Scholar 

  128. Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L.: Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32(2), 172–184 (2007)

    Article  Google Scholar 

  129. Kim, D.-H., Kim, S.-H., Shin, H.-S.: Sodium inhibition of fermentative hydrogen production. Int. J. Hydrogen Energy 34(8), 3295–3304 (2009)

    Article  Google Scholar 

  130. Fan, Y.-T., Xing, Y., Ma, H.-C., Pan, C.-M., Hou, H.-W.: Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. Int. J. Hydrogen Energy 33(21), 6058–6065 (2008)

    Article  Google Scholar 

  131. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34(2), 799–811 (2009)

    Article  Google Scholar 

  132. Rai, P.K., Singh, S.P., Asthana, R.K., Singh, S.: Biohydrogen production from sugarcane bagasse by integrating dark-and photo-fermentation. Bioresour. Technol. 152, 140–146 (2014)

    Article  Google Scholar 

  133. Radjaram, B., Saravanane, R.: Start up study of UASB reactor treating press mud for biohydrogen production. Biomass Bioenergy 35(7), 2721–2728 (2011)

    Article  Google Scholar 

  134. Radjaram, B., Saravanane, R.: Assessment of optimum dilution ratio for biohydrogen production by anaerobic co-digestion of press mud with sewage and water. Bioresour. Technol. 102(3), 2773–2780 (2011)

    Article  Google Scholar 

  135. Lazaro, C.Z., Perna, V., Etchebehere, C., Varesche, M.B.A.: Sugarcane vinasse as substrate for fermentative hydrogen production: the effects of temperature and substrate concentration. Int. J. Hydrogen Energy 39(12), 6407–6418 (2014)

    Article  Google Scholar 

  136. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015)

    Article  Google Scholar 

  137. Couto, S.R., Sanromán, M.A.: Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22(3), 211–219 (2005)

    Article  Google Scholar 

  138. Singhania, R.R., Sukumaran, R.K., Pillai, A., Prema, P., Szakacs, G., Pandey, A.: Solid-state fermentation of lignocellulosic substrates for cellulase production by Trichoderma reesei NRRL 11460. Indian J. Biotechnol. 5(3), 332–336 (2006)

    Google Scholar 

  139. Rodríguez-Zúñiga, U.F., Neto, V.B., Couri, S., Crestana, S., Farinas, C.S.: Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Appl. Biochem. Biotechnol. 172(5), 2348–2362 (2014)

    Article  Google Scholar 

  140. de Castro, A.M., de Carvalho, M.L.D.A., Leite, S.G.F., Pereira Jr., N.: Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J. Ind. Microbiol. Biotechnol. 37(2), 151–158 (2010)

    Article  Google Scholar 

  141. Cassia Pereira, J., Paganini Marques, N., Rodrigues, A., Brito de Oliveira, T., Boscolo, M., Silva, R.D., Gomes, E., Bocchini Martins, D.A.: Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J. Appl. Microbiol. 118(4), 928–939 (2015)

    Article  Google Scholar 

  142. Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35(5), 377–391 (2008)

    Article  Google Scholar 

  143. Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K.: Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 156(4), 286–301 (2011)

    Article  Google Scholar 

  144. Yadegary, M., Hamidi, A., Alavi, S.A., Khodaverdi, E., Yahaghi, H., Sattari, S., Bagherpour, G., Yahaghi, E.: Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi method. Jundishapur J. Microbiol. 6(9), 1–6 (2013)

  145. Adsul, M.G., Varma, A.J., Gokhale, D.V.: Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem. 9(1), 58–62 (2007)

    Article  Google Scholar 

  146. Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., Gokhale, D.: Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74(1), 333–335 (2008)

    Article  Google Scholar 

  147. Liang, L., Liu, R., Li, F., Wu, M., Chen, K., Ma, J., Jiang, M., Wei, P., Ouyang, P.: Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour. Technol. 143, 405–412 (2013)

    Article  Google Scholar 

  148. Brandão, P.C., Souza, T.C., Ferreira, C.A., Hori, C.E., Romanielo, L.L.: Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. J. Hazard. Mater. 175(1), 1106–1112 (2010)

    Article  Google Scholar 

  149. Miretzky, P., Cirelli, A.F.: Cr (VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J. Hazard. Mater. 180(1), 1–19 (2010)

    Article  Google Scholar 

  150. Mack, C., Wilhelmi, B., Duncan, J.R., Burgess, J.E.: Biosorption of precious metals. Biotechnol. Adv. 25(3), 264–271 (2007)

    Article  Google Scholar 

  151. Kaur, S., Rani, S., Mahajan, R.K.: Adsorptive removal of dye crystal violet onto low-cost carbon produced from Eichhornia plant: kinetic, equilibrium, and thermodynamic studies. Desalination Water Treat. 53(2), 543–556 (2015)

    Article  Google Scholar 

  152. Alomá, I., Martín-Lara, M.A., Rodríguez, I.L., Blázquez, G., Calero, M.: Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 43(2), 275–281 (2012)

    Article  Google Scholar 

  153. Wang, J., Chen, C.: Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27(2), 195–226 (2009)

    Article  Google Scholar 

  154. Tao, H.-C., Zhang, H.-R., Li, J.-B., Ding, W.-Y.: Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresour. Technol. 192, 611–617 (2015)

    Article  Google Scholar 

  155. Esfandiar, N., Nasernejad, B., Ebadi, T.: Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): application of response surface methodology (RSM). J. Ind. Eng. Chem. 20(5), 3726–3736 (2014)

    Article  Google Scholar 

  156. Mohamad, M., Ahmad, H., Ismail, N., Morad, N., Samuding, K.: Enhancement of natural local soil in minimizing the migration of heavy metals using pressmud. Int. J. Adv. Agric. Environ. Eng. 1(1), 89–93 (2014)

    Google Scholar 

  157. Karnitz, O., Gurgel, L.V.A., Gil, L.F.: Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD). Carbohydr. Polym. 79(1), 184–191 (2010)

    Article  Google Scholar 

  158. Eyheraguibel, B., Silvestre, J.R.M., Morard, P.: Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 99(10), 4206–4212 (2008)

    Article  Google Scholar 

  159. Rahman, A., Begum, M.F., Rahman, M., Bari, M.A., Illias, G.N.M., Alam, M.F.: Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste. Turk. J. Biol. 35(2), 183–194 (2011)

    Google Scholar 

  160. Vargas-Garcı, M.C., Suárez-Estrella, F., López, M.J., Moreno, J.: Effect of inoculation in composting processes: modifications in lignocellulosic fraction. Waste Manage. 27(9), 1099–1107 (2007)

    Article  Google Scholar 

  161. Gupta, N., Tripathi, S., Balomajumder, C.: Characterization of pressmud: a sugar industry waste. Fuel 90(1), 389–394 (2011)

    Article  Google Scholar 

  162. Mahamuni, S.V., Patil, A.S.: Microbial consortium treatment to distillery spent wash and press mud cake through pit and windrow system of composting. J. Chem. Biol. Phys. Sci. 2(2), 847–855 (2012)

    Google Scholar 

  163. Joshi, N., Sharma, S., Kangri, G.: Physico-chemical characterization of sulphidation press mud composted press mud and vermicomposted pressmud. Rep. Opin. 2(3), 79–82 (2010)

    Google Scholar 

  164. Kalaivanan, D., Hattab, K.O.: Influence of enriched pressmud compost on soil chemical properties and yield of rice. Res. J. Microbiol. 3(4), 254–261 (2008)

    Article  Google Scholar 

  165. Sarker, T.C., Mannan, M.A., Mondol, P.C., Kabir, A.H., Parvez, S.M., Alam, M.F.: Physico-chemical profile and microbial diversity during bioconversion of sugarcane press mud using bacterial suspension. Not. Sci. Biol. 5(3), 346–353 (2013)

    Google Scholar 

  166. Khwairakpam, M., Bhargava, R.: Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresour. Technol. 100(23), 5846–5852 (2009)

    Article  Google Scholar 

  167. Sangwan, P., Kaushik, C.P., Garg, V.K.: Vermicomposting of sugar industry waste (press mud) mixed with cow dung employing an epigeic earthworm Eisenia fetida. Waste Manage. Res. 28(1), 71–75 (2010)

    Article  Google Scholar 

  168. Prakash, M., Karmegam, N.: Vermistabilization of pressmud using Perionyx ceylanensis Mich. Bioresour. Technol. 101(21), 8464–8468 (2010)

    Article  Google Scholar 

  169. Kumar, R., Verma, D., Singh, B.L., Kumar, U.: Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 101(17), 6707–6711 (2010)

    Article  Google Scholar 

  170. Dominguez, M., Mejia, A., Revah, S., Barrios-González, J.: Optimization of bagasse, nutrients and initial moisture ratios on the yield of penicillin in solid-state fermentation. World J. Microbiol. Biotechnol. 17(7), 751–756 (2001)

    Article  Google Scholar 

  171. Nigam, J.N.: Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J. Microbiol. Biotechnol. 16(4), 367–372 (2000)

    Article  Google Scholar 

  172. Mandelli, F., Brenelli, L.B., Almeida, R.F., Goldbeck, R., Wolf, L.D., Hoffmam, Z.B., Ruller, R., Rocha, G.J.M., Mercadante, A.Z., Squina, F.M.: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis. Ind. Crops Prod. 52, 770–775 (2014)

    Article  Google Scholar 

  173. Gebre, H., Fisha, K., Kindeya, T., Gebremichal, T.: Synthesis of furfural from bagasse. Int. Lett. Chem. Phys. Astron. 57, 72–84 (2015)

    Article  Google Scholar 

  174. Baudel, H.M., Zaror, C., de Abreu, C.S.A.M.: Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Ind. Crops Prod. 21(3), 309–315 (2005)

    Article  Google Scholar 

  175. Abd-Alla, A.: Microbial conversion of sugar cane phytosterol by Fusarium solani. Int. J. Anal. Pharm. Biomed. Sci. 2(4), 14–21 (2013)

    Google Scholar 

  176. Ou, S., Zhao, J., Wang, Y., Tian, Y., Wang, J.: Preparation of octacosanol from filter mud produced after sugarcane juice clarification. LWT Food Sci. Technol. 45(2), 295–298 (2012)

    Article  Google Scholar 

  177. Suma, N., Reddy, B.S.V., Gloridoss, R.G., Prabhu, T.M., Kumar, C.B., Suresh, B.N., Shilpa, V.T.: Egg shell and yolk quality characteristics of layers fed with sugarcane press residue in soya and fish based diets. Vet. World 8(2), 232–238 (2015)

    Article  Google Scholar 

  178. Bonomi, A., Cavalett, O., da Cunha, M.P., Lima, M.A.P.: The virtual sugarcane biorefinery concept. Virtual biorefinery, pp. 5–11. Springer, Berlin (2016)

    Chapter  Google Scholar 

  179. Junqueira, T.L., Cavalett, O., Bonomi, A.: The virtual sugarcane biorefinery—a simulation tool to support public policies formulation in bioenergy. Ind. Biotechnol. 12(1), 62–67 (2016)

    Article  Google Scholar 

  180. ISO: ISO Norm 14040:2006. Life Cycle Assessment: Principles and Framework. Environmental Management. International Organisation for Standardisation, Geneva (2006)

  181. Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell, C.E.V., Maciel Filho, R., Bonomi, A.: Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour. Technol. 103(1), 152–161 (2012)

    Article  Google Scholar 

  182. Moraes, B.S., Junqueira, T.L., Pavanello, L.G., Cavalett, O., Mantelatto, P.E., Bonomi, A., Zaiat, M.: Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl. Energy 113, 825–835 (2014)

    Article  Google Scholar 

  183. Pereira, L.G., Chagas, M.F., Dias, M.O.S., Cavalett, O., Bonomi, A.: Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. J. Clean. Prod. 96, 557–568 (2015)

    Article  Google Scholar 

  184. Pereira, L.G., Chagas, M.F., Dias, M.O.S., Cavalett, O., Bonomi, A.: Life cycle assessment of biobutanol production integrated to sugarcane biorefineries in Brazil. In: “Integrating cleaner production into sustainability strategies” 4th International Workshop, São Paulo, Brazil, 22–24 May, 2013

  185. de Moraes Rocha, G.J., Nascimento, V.M., Goncalves, A.R., Silva, V.F.N., Martín, C.: Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Ind. Crops Prod. 64, 52–58 (2015)

    Article  Google Scholar 

  186. Liu, C.-F., Sun, R.-C., Qin, M.-H., Zhang, A.-P., Ren, J.-L., Xu, F., Ye, J., Wu, S.-B.: Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Ind. Crops Prod. 26(2), 212–219 (2007)

    Article  Google Scholar 

  187. Peng, F., Ren, J.-L., Xu, F., Bian, J., Peng, P., Sun, R.-C.: Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. 57(14), 6305–6317 (2009)

    Article  Google Scholar 

  188. Zhang, Z., O’Hara, I.M., Doherty, W.O.S.: Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions. Bioresour. Technol. 120, 149–156 (2012)

    Article  Google Scholar 

  189. Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C.: Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98(10), 1947–1950 (2007)

    Article  Google Scholar 

  190. Pattra, S., Sangyoka, S., Boonmee, M., Reungsang, A.: Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energy 33(19), 5256–5265 (2008)

    Article  Google Scholar 

  191. Cheng, K.-K., Cai, B.-Y., Zhang, J.-A., Ling, H.-Z., Zhou, Y.-J., Ge, J.-P., Xu, J.-M.: Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem. Eng. J. 38(1), 105–109 (2008)

    Article  Google Scholar 

  192. Zhao, X., Song, Y., Liu, D.: Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production. Enzyme Microb. Technol. 49(4), 413–419 (2011)

    Article  Google Scholar 

  193. Rodríguez-Chong, A., Ramírez, J.A., Garrote, G., Vázquez, M.: Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61(2), 143–152 (2004)

    Article  Google Scholar 

  194. Gámez, S., González-Cabriales, J.J., Ramírez, J.A., Garrote, G., Vázquez, M.: Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng. 74(1), 78–88 (2006)

    Article  Google Scholar 

  195. Pasquini, D., Pimenta, M.T.B., Ferreira, L.H., Curvelo, A.A.S.: Sugar cane bagasse pulping using supercritical CO 2 associated with co-solvent 1-butanol/water. J. Supercrit. Fluids 34(2), 125–131 (2005)

    Article  Google Scholar 

  196. Pasquini, D., Pimenta, M.T.B., Ferreira, L.H., da Silva Curvelo, A.A.: Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol—water mixtures and carbon dioxide at high pressures. J. Supercrit. Fluids 36(1), 31–39 (2005)

    Article  Google Scholar 

  197. González, L.M.L., Vervaeren, H., Reyes, I.P., Dumoulin, A., Romero, O.R., Dewulf, J.: Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud. Bioresour. Technol. 131, 250–257 (2013)

    Article  Google Scholar 

  198. Vallejos, M.E., Felissia, F.E., Kruyeniski, J., Area, M.C.: Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind. Crops Prod. 67, 1–6 (2015)

    Article  Google Scholar 

  199. Batalha, L.A.R., Han, Q., Jameel, H., Chang, H.-M., Colodette, J.L., Gomes, F.J.B.: Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresour. Technol. 180, 97–105 (2015)

    Article  Google Scholar 

  200. Sendelius, J.: Steam pretreatment optimization for sugarcane bagasse in bioethanol production. Master of Science Thesis. Department of Chemical Engineering, Lund University, Sweden (2005)

  201. Schneider, W.D.H., dos Reis, L., Camassola, M., Dillon, A.J.P.: Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources. BioMed Res. Int. 2014, 1–10 (2014)

  202. Guilherme, A.A., Dantas, P.V.F., Santos, E.S., Fernandes, F.A.N., Macedo, G.R.: Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 32(1), 23–33 (2015)

    Article  Google Scholar 

  203. Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., Pandey, A.: Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energy 37(1), 109–116 (2012)

    Article  Google Scholar 

  204. Qiu, Z., Aita, G.M., Walker, M.S.: Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117, 251–256 (2012)

    Article  Google Scholar 

  205. Zhao, X.B., Wang, L., Liu, D.H.: Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 82(12), 1115–1121 (2007)

    Article  Google Scholar 

  206. Das, P., Ganesh, A., Wangikar, P.: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenergy 27(5), 445–457 (2004)

    Article  Google Scholar 

  207. Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R.K., Pandey, A.: Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renew. Energy 62, 362–368 (2014)

    Article  Google Scholar 

  208. Dos Santos, D.D.S., Camelo, A.C., Rodrigues, K.C.P., Carlos, L.C., Pereira Jr., N.: Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process. Appl. Biochem. Biotechnol. 161(1–8), 93–105 (2010)

    Article  Google Scholar 

  209. Martins, E.S., Silva, D., Da Silva, R., Gomes, E.: Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem. 37(9), 949–954 (2002)

    Article  Google Scholar 

  210. Martín, C., Marcet, M., Almazán, O., Jönsson, L.J.: Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour. Technol. 98(9), 1767–1773 (2007)

    Article  Google Scholar 

  211. Rouf, M.A., Islam, M.S., Bajpai, P.K., Jotshic, C.K.: Techno-economic assessment of biogas production from press mud in Bangladesh. Bangladesh J. Sci. Ind. Res. 48(1), 51–58 (2013)

    Article  Google Scholar 

  212. Janke, L., Leite, A.F., Nikolausz, M., Radetski, C.M., Nelles, M., Stinner, W.: Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Manage. 48, 199–208 (2016)

    Article  Google Scholar 

  213. Bolado-Rodríguez, S., Toquero, C., Martín-Juárez, J., Travaini, R., García-Encina, P.A.: Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour. Technol. 201, 182–190 (2016)

    Article  Google Scholar 

  214. Fangkum, A., Reungsang, A.: Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: effects of initial pH and substrate concentration. Int. J. Hydrogen Energy 36(14), 8687–8696 (2011)

    Article  Google Scholar 

  215. Bocchini, D.A., Oliveira, O., Gomes, E., Da Silva, R.: Use of sugarcane bagasse and grass hydrolysates as carbon sources for xylanase production by Bacillus circulans D1 in submerged fermentation. Process Biochem. 40(12), 3653–3659 (2005)

    Article  Google Scholar 

  216. Milagres, A.M.F., Santos, E., Piovan, T., Roberto, I.C.: Production of xylanase by Thermoascus aurantiacus from sugar cane bagasse in an aerated growth fermentor. Process Biochem. 39(11), 1387–1391 (2004)

    Article  Google Scholar 

  217. Pandey, P., Pandey, A.K.: Production of cellulase-free thermostable xylanases by an isolated strain of Aspergillus niger PPI, utilizing various lignocellulosic wastes. World J. Microbiol. Biotechnol. 18(3), 281–283 (2002)

    Article  Google Scholar 

  218. Oliveira, L.A., Porto, A.L.F., Tambourgi, E.B.: Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresour. Technol. 97(6), 862–867 (2006)

    Article  Google Scholar 

  219. Muthuvelayudham, R., Viruthagiri, T.: Fermentative production and kinetics of cellulase protein on Trichoderma reesei using sugarcane bagasse and rice straw. Afr. J. Biotechnol. 5(20), 1873–1881 (2006)

  220. Ojumu, T.V., Solomon, B.O., Betiku, E., Layokun, S.K., Amigun, B.: Cellulase production by Aspergillus flavus Linn Isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr. J. Biotechnol. 2(6), 150–152 (2003)

    Article  Google Scholar 

  221. Martin, N., Souza, S.R.D., Silva, R.D., Gomes, E.: Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct. Braz. Arch. Biol. Technol. 47(5), 813–819 (2004)

    Article  Google Scholar 

  222. Silva, D., Martins, E.D.S., Silva, R.D., Gomes, E.: Pectinase production by Penicillium viridicatum RFC3 by solid state fermentation using agricultural wastes and agro-industrial by-products. Braz. J. Microbiol. 33(4), 318–324 (2002)

    Google Scholar 

  223. Ferreira, V., Da Silva, R., Silva, D., Gomes, E.: Production of pectate lyase by Penicillium viridicatum RFC3 in solid-state and submerged fermentation. Int. J. Microbiol. 2010, 1–8 (2010)

  224. Singh, A., Bajar, S., Bishnoi, N.R., Singh, N.: Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. J. Hazard. Mater. 176(1), 1079–1082 (2010)

    Article  Google Scholar 

  225. Mazutti, M.A., Zabot, G., Boni, G., Skovronski, A., de Oliveira, D., Di Luccio, M., Rodrigues, M.I., Treichel, H., Maugeri, F.: Optimization of inulinase production by solid-state fermentation in a packed-bed bioreactor. J. Chem. Technol. Biotechnol. 85(1), 109–114 (2010)

    Article  Google Scholar 

  226. Mohapatra, P.K.D., Mondal, K.C., Pati, B.R.: Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads. J. Appl. Microbiol. 102(6), 1462–1467 (2007)

    Article  Google Scholar 

  227. Rajagopalan, G., Krishnan, C.: α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour. Technol. 99(8), 3044–3050 (2008)

    Article  Google Scholar 

  228. Rodriguez, J.A., Mateos, J.C., Nungaray, J., Gonzále, V., Bhagnagar, T., Roussos, S., Cordova, J., Baratti, J.: Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem. 41(11), 2264–2269 (2006)

    Article  Google Scholar 

  229. Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L.: Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 101(3), 1036–1043 (2010)

    Article  Google Scholar 

  230. John, R.P., Nampoothiri, K.M., Pandey, A.: Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem. 41(4), 759–763 (2006)

    Article  Google Scholar 

  231. Kumar, D., Jain, V.K., Shanker, G., Srivastava, A.: Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem. 38(12), 1731–1738 (2003)

    Article  Google Scholar 

  232. Khosravi-Darani, K., Zoghi, A.: Comparison of pretreatment strategies of sugarcane baggase: experimental design for citric acid production. Bioresour. Technol. 99(15), 6986–6993 (2008)

    Article  Google Scholar 

  233. Liu, R., Liang, L., Li, F., Wu, M., Chen, K., Ma, J., Jiang, M., Wei, P., Ouyang, P.: Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresour. Technol. 149, 84–91 (2013)

    Article  Google Scholar 

  234. Xi, Y.-L., Dai, W.-Y., Xu, R., Zhang, J.-H., Chen, K.-Q., Jiang, M., Wei, P., Ouyang, P.-K.: Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioprocess Biosyst. Eng. 36(11), 1779–1785 (2013)

    Article  Google Scholar 

  235. Jiang, M., Xu, R., Xi, Y.-L., Zhang, J.-H., Dai, W.-Y., Wan, Y.-J., Chen, K.-Q., Wei, P.: Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresour. Technol. 135, 469–474 (2013)

    Article  Google Scholar 

  236. Singh, O.V., Jain, R.K., Singh, R.P.: Gluconic acid production under varying fermentation conditions by Aspergillus niger. J. Chem. Technol. Biotechnol. 78(2–3), 208–212 (2003)

    Article  Google Scholar 

  237. Behnood, R., Anvaripour, B., Jaafarzade Haghighi Fard, N., Farasati, M.: Petroleum hydrocarbons adsorption from aqueous solution by raw sugarcane bagasse. Int. J. Emerg. Sci. Eng. 1(6), 96–99 (2013)

    Google Scholar 

  238. Garg, U.K., Kaur, M.P., Garg, V.K., Sud, D.: Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour. Technol. 99(5), 1325–1331 (2008)

    Article  Google Scholar 

  239. Garg, U., Kaur, M.P., Jawa, G.K., Sud, D., Garg, V.K.: Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J. Hazard. Mater. 154(1), 1149–1157 (2008)

    Article  Google Scholar 

  240. Zhang, Z., O’Hara, I.M., Kent, G.A., Doherty, W.O.S.: Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crops Prod. 42, 41–49 (2013)

    Article  Google Scholar 

  241. Ullah, I., Nadeem, R., Iqbal, M., Manzoor, Q.: Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol. Eng. 60, 99–107 (2013)

    Article  Google Scholar 

  242. Niu, X., Zheng, L., Zhou, J., Dang, Z., Li, Z.: Synthesis of an adsorbent from sugarcane bagass by graft copolymerization and its utilization to remove Cd (II) ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 45(5), 2557–2564 (2014)

    Article  Google Scholar 

  243. Yu, J.-X., Wang, L.-Y., Chi, R.-A., Zhang, Y.-F., Xu, Z.-G., Guo, J.: Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl. Surf. Sci. 268, 163–170 (2013)

    Article  Google Scholar 

  244. Gurgel, L.V.A., de Freitas, R.P., Gil, L.F.: Adsorption of Cu (II), Cd (II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohydr. Polym. 74(4), 922–929 (2008)

    Article  Google Scholar 

  245. Júnior, O.K., Gurgel, L.V.A., de Freitas, R.P., Gil, L.F.: Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr. Polym. 77(3), 643–650 (2009)

    Article  Google Scholar 

  246. Xing, Y., Liu, D., Zhang, L.-P.: Enhanced adsorption of methylene blue by EDTAD-modified sugarcane bagasse and photocatalytic regeneration of the adsorbent. Desalination 259(1), 187–191 (2010)

    Article  Google Scholar 

  247. Karnitz, O., Gurgel, L.V.A., De Melo, J.C.P., Botaro, V.R., Melo, T.N.M.R.S., de Freitas Gil, R.P., Gil, L.F.: Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 98(6), 1291–1297 (2007)

    Article  Google Scholar 

  248. Mulinari, D.R., da Silva, M.L.C.C.P.: Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydr. Polym. 74(3), 617–620 (2008)

    Article  Google Scholar 

  249. Rana, K., Shah, M., Limbachiya, N.: Adsorption of copper Cu2+ metal ion from waste water using sulphuric acid treated sugarcane bagasse as adsorbent. Int. J. Adv. Eng. Res. Sci. 1(1), 55–59 (2014)

    Google Scholar 

  250. Homagai, P.L., Ghimire, K.N., Inoue, K.: Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour. Technol. 101(6), 2067–2069 (2010)

    Article  Google Scholar 

  251. Gusmão, K.A.G., Gurgel, L.V.A., Melo, T.M.S., Gil, L.F.: Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions—kinetic and equilibrium studies. Dyes Pigments 92(3), 967–974 (2012)

    Article  Google Scholar 

  252. Khoramzadeh, E., Nasernejad, B., Halladj, R.: Mercury biosorption from aqueous solutions by sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 44(2), 266–269 (2013)

    Article  Google Scholar 

  253. Pehlivan, E., Tran, H.T., Ouédraogo, W.K.I., Schmidt, C., Zachmann, D., Bahadir, M.: Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem. 138(1), 133–138 (2013)

    Article  Google Scholar 

  254. Zaheer, S., Bhatti, H.N., Sdaf, S., Safa, Y., Zia-ur-Ruhman, M.: Biosorptioncharateristics of sugarcane bagasse for the removal of foron blue E-BL bye from aqueous solutions. J. Anim. Plants Sci. 24(1), 272–279 (2014)

    Google Scholar 

  255. Ayyappan, R., Sophia, A.C., Swaminathan, K., Sandhya, S.: Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes. Process Biochem. 40(3), 1293–1299 (2005)

    Article  Google Scholar 

  256. Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O., Fernández-Pereira, C.: Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144(1), 42–50 (2008)

    Article  Google Scholar 

  257. Amin, N.K.: Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223(1), 152–161 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We are really thankful to Dr. Ahmed abd-El Gawad for extensively editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Chandra Sarker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, T.C., Azam, S.M.G.G. & Bonanomi, G. Recent Advances in Sugarcane Industry Solid By-Products Valorization. Waste Biomass Valor 8, 241–266 (2017). https://doi.org/10.1007/s12649-016-9665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9665-3

Keywords

Navigation