Skip to main content
Log in

Bioconversion-Composting of Golden Needle Mushroom (Flammulina velutipes) Root Waste by Black Soldier Fly (Hermetia illucens, Diptera: Stratiomyidae) Larvae, to Obtain Added-Value Biomass and Fertilizer

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A new bioconversion-composting process of golden needle mushroom (Flammulina velutipes) root waste was established using black soldier fly larvae (BSFL) to produce added-value biomass and organic fertilizer. The entire process included two stages: BSFL conversion and conventional composting, which lasted 40 days. After a 26-day bioconversion, a considerable quantity of BSFL was obtained, which could be used to produce the protein feed, chitin, antibacterial peptide, biodiesel and so on. The bioconversion parameters of waste reduction rate and BSFL conversion rate were 54.8 ± 0.4 and 5.06 ± 0.27%, respectively. Following the 14-day conventional composting, the mushroom root waste turned into an organic fertilizer. The moisture, organic matter, total nitrogen, total phosphorus, and total potassium concentrations of the obtained fertilizer were 29.3 ± 0.9, 76.0 ± 1.7, 2.74 ± 0.09, 2.07 ± 0.06, and 1.34 ± 0.15%, respectively. The germination index was 65.7 ± 3.2% for Chinese cabbage and 52.9 ± 1.3% for rapeseed. To accelerate bioconversion, increase output of larvae biomass and shorten the developing time of BSFL, two auxiliary materials, nitrogen source, namely, bran and kitchen wastes, were mixed with mushroom roots. Both were significantly effective, and the recommended percentage was 40%. In that case, the developing time reduced to approximately 15–16 days, and the BSFL conversion rate increased by 31.2–172.7%. Accordingly, one simple process flowchart was drawn, and the output was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xia, Z.: Preparation of the oligosaccharides derived from Flammulina velutipes and their antioxidant activities. Carbohydr. Polym. 118, 41–43 (2015). doi:10.1016/j.carbpol.2014.10.074

    Article  Google Scholar 

  2. Kang, L.-z., Zeng, X.-l., Ye, Z.-w., Lin, J.-f., Guo, L.-q.: Compositional analysis of the fruiting body of transgenic Flammulina velutipes producing resveratrol. Food Chem. 164, 211–218 (2014). doi:10.1016/j.foodchem.2014.05.023

    Article  Google Scholar 

  3. Yang, W., Yu, J., Pei, F., Mariga, A.M., Ma, N., Fang, Y., Hu, Q.: Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME–GC–MS and electronic nose. Food Chem. 196, 860–866 (2016). doi:10.1016/j.foodchem.2015.09.097

    Article  Google Scholar 

  4. Donglu, F., Wenjian, Y., Kimatu, B.M., Mariga, A.M., Liyan, Z., Xinxin, A., Qiuhui, H.: Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innov. Food Sci. Emerg. Technol. 33, 489–497 (2016). doi:10.1016/j.ifset.2015.11.016

    Article  Google Scholar 

  5. Sheng, J., Yu, F., Xin, Z., Zhao, L., Zhu, X., Hu, Q.: Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem. 105(2), 533–539 (2007). doi:10.1016/j.foodchem.2007.04.018

    Article  Google Scholar 

  6. Pang, X., Yao, W., Yang, X., Xie, C., Liu, D., Zhang, J., Gao, X.: Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium. Carbohydr. Polym. 70(3), 291–297 (2007). doi:10.1016/j.carbpol.2007.04.010

    Article  Google Scholar 

  7. Shi, M., Yang, Y., Guan, D., Zhang, Y., Zhang, Z.: Bioactivity of the crude polysaccharides from fermented soybean curd residue by Flammulina velutipes. Carbohydr. Polym. 89(4), 1268–1276 (2012). doi:10.1016/j.carbpol.2012.04.047

    Article  Google Scholar 

  8. Yang, W., Pei, F., Shi, Y., Zhao, L., Fang, Y., Hu, Q.: Purification, characterization and anti-proliferation activity of polysaccharides from Flammulina velutipes. Carbohydr. Polym. 88(2), 474–480 (2012). doi:10.1016/j.carbpol.2011.12.018

    Article  Google Scholar 

  9. Zhang, A.-q., Xiao, N.-n., Deng, Y.-l., He, P.-f., Sun, P.-l.: Purification and structural investigation of a water-soluble polysaccharide from Flammulina velutipes. Carbohydr. Polym. 87(3), 2279–2283 (2012). doi:10.1016/j.carbpol.2011.10.061

    Article  Google Scholar 

  10. Čičková, H., Newton, G.L., Lacy, R.C., Kozánek, M.: The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80 (2015). doi:10.1016/j.wasman.2014.09.026

    Article  Google Scholar 

  11. Diener, S., Studt Solano, N.M., Roa Gutiérrez, F., Zurbrügg, C., Tockner, K.: Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization. 2(4), 357–363 (2011). doi:10.1007/s12649-011-9079-1

    Article  Google Scholar 

  12. Westerman, P.W., Bicudo, J.R.: Management considerations for organic waste use in agriculture. Bioresour. Technol. 96(2), 215–221 (2005). doi:10.1016/j.biortech.2004.05.011

    Article  Google Scholar 

  13. Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., Schulz, C.: When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute—growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture. 364–365(0), 345–352 (2012). doi:10.1016/j.aquaculture.2012.08.041

    Article  Google Scholar 

  14. Barroso, F.G., de Haro, C., Sánchez-Muros, M.-J., Venegas, E., Martínez-Sánchez, A., Pérez-Bañón, C.: The potential of various insect species for use as food for fish. Aquaculture 422423(0), 193–201 (2014). doi:10.1016/j.aquaculture.2013.12.024

    Article  Google Scholar 

  15. Li, W., Li, M., Zheng, L., Liu, Y., Zhang, Y., Yu, Z., Ma, Z., Li, Q.: Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol. Biofuels. 8(1), 1–6 (2015). doi:10.1186/s13068-015-0306-z

    Article  Google Scholar 

  16. Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J.K., Yu, Z.: Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag. 31(6), 1316–1320 (2011). doi:10.1016/j.wasman.2011.01.005

    Article  Google Scholar 

  17. Jing, Y., Hao, Y., Qu, H., Shan, Y., Li, D., Du, R.: Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biol. Hung. 58(1), 75–86 (2007). doi:10.1556/ABiol.57.2007.1.7 doi

    Article  Google Scholar 

  18. Zheng, L., Li, Q., Zhang, J., Yu, Z.: Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy. 41, 75–79 (2012). doi:10.1016/j.renene.2011.10.004

    Article  Google Scholar 

  19. Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J., Yu, Z., Zhang, Y.: Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour. Technol. 194, 276–282 (2015). doi:10.1016/j.biortech.2015.06.112

    Article  Google Scholar 

  20. Park, S.-I., Kim, J.-W., Yoe, S.M.: Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol. 52(1), 98–106 (2015). doi:10.1016/j.dci.2015.04.018

    Article  Google Scholar 

  21. Sheppard, D.C., Tomberlin, J.K., Joyce, J.A., Kiser, B.C., Sumner, S.M.: Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J. Med. Entomol. 39(4), 695–698 (2002). doi:10.1603/0022-2585-39.4.695

    Article  Google Scholar 

  22. Zhou, F., Tomberlin, J.K., Zheng, L., Yu, Z., Zhang, J.: Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 50(6), 1224–1230 (2013). doi:10.1603/me13021

    Article  Google Scholar 

  23. Diener, S., Zurbrügg, C., Tocknera, K.: Conversion of organic material by black soldier fly larvae—establishing optimal feeding rates. Waste Manag. Res. 27(6), 603–610 (2009). doi:10.1177/0734242X09103838

    Article  Google Scholar 

  24. Zhang, Z., Wang, H., Zhu, J., Suneethi, S., Zheng, J.: Swine manure vermicomposting via housefly larvae (Musca domestica): the dynamics of biochemical and microbial features. Bioresour. Technol. 118(0), 563–571 (2012). doi:10.1016/j.biortech.2012.05.048

    Article  Google Scholar 

  25. Parra Paz, A.S., Carrejo, N.S., Gómez Rodríguez, C.H.: Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valorization. 6(6), 1059–1065 (2015). doi:10.1007/s12649-015-9418-8

    Article  Google Scholar 

  26. Liu, L., Kong, H., Lu, B., Wang, J., Xie, Y., Fang, P.: The use of concentrated monosodium glutamate wastewater as a conditioning agent for adjusting acidity and minimizing ammonia volatilization in livestock manure composting. J. Environ. Manag. 161, 131–136 (2015). doi:10.1016/j.jenvman.2015.06.029

    Article  Google Scholar 

  27. Zucconi, F., Pera, A., Forte, M., De Bertoldi, M.: Evaluating toxicity of immature compost. Biocycle. 22(2), 54–57 (1981)

    Google Scholar 

  28. Ko, W.-C., Liu, W.-C., Tsang, Y.-T., Hsieh, C.-W.: Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. J. Food Eng. 81(3), 587–598 (2007). doi:10.1016/j.jfoodeng.2006.12.009

    Article  Google Scholar 

  29. Lee, K.J., Yun, I.J., Kim, K.H., Lim, S.H., Ham, H.J., Eum, W.S., Joo, J.H.: Amino acid and fatty acid compositions of Agrocybe chaxingu, an edible mushroom. J. Food Compos. Anal. 24(2), 175–178 (2011). doi:10.1016/j.jfca.2010.09.011

    Article  Google Scholar 

  30. Smiderle, F.R., Carbonero, E.R., Sassaki, G.L., Gorin, P.A.J., Iacomini, M.: Characterization of a heterogalactan: some nutritional values of the edible mushroom Flammulina velutipes. Food Chem. 108(1), 329–333 (2008). doi:10.1016/j.foodchem.2007.10.029

    Article  Google Scholar 

  31. Wu, X., Wei, Y., Zheng, J., Zhao, X., Zhong, W.: The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour. Technol. 102(10), 5924–5931 (2011). doi:10.1016/j.biortech.2011.03.007

    Article  Google Scholar 

  32. Qian, X., Sun, W., Gu, J., Wang, X.-J., Sun, J.-J., Yin, Y.-N., Duan, M.-L.: Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure. J. Hazard. Mater. 315, 61–69 (2016). doi:10.1016/j.jhazmat.2016.05.002

    Article  Google Scholar 

  33. Zheng, L., Hou, Y., Li, W., Yang, S., Li, Q., Yu, Z.: Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy. 47(1), 225–229 (2012). doi:10.1016/j.energy.2012.09.006

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from National Natural Science Foundation of China (41603110), The Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture, China (201303094), Postdoctoral Science Foundation of China (2015M572165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 682 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Zhang, K., Zhong, W. et al. Bioconversion-Composting of Golden Needle Mushroom (Flammulina velutipes) Root Waste by Black Soldier Fly (Hermetia illucens, Diptera: Stratiomyidae) Larvae, to Obtain Added-Value Biomass and Fertilizer. Waste Biomass Valor 10, 265–273 (2019). https://doi.org/10.1007/s12649-017-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0063-2

Keywords

Navigation