Skip to main content
Log in

Fed-Batch Fermentation of Yarrowia Lipolytica Using Defatted Silkworm Pupae Hydrolysate: A Dynamic Model-Based Approach for High Yield of Lipid Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lipid production by Yarrowia lipolytica W29 in fed-batch mode was investigated by using low-cost substitutable defatted silkworm pupae hydrolysate (DSWPH) as a feedstock. Based on the optimized lipid fermentation conditions, three media (i.e. yeast extract, DSWPH, yeast extract-DSWPH as N sources) were investigated in a batch fermentation process. The DSWPH medium displayed the optimal lipid accumulation ability with lipid yield raised by 16.13%, ratio of unsaturated fatty acids/saturated fatty acids (UFAs/SFAs) improved by 95.70%, and ratio of unsaturated fatty acids in total fatty acids (UFAs/TFAs) increased to 87.23%. The mathematical equations based on experimental data provided a good description of temporal variations such as dry cell weight, glucose consumption, and product formation in the fermentation process. The results showed that the Luedeking–Piret type equation successfully described glucose consumption and lipid accumulation in the batch culture process. A fed-batch fermentation process was then designed based on the model prediction. In the lag phase, rapid biomass growth and lipid accumulation were sequentially achieved with the adjustment of temperature, pH, and dissolved oxygen. Finally, the maximum biomass and lipid productivity were 24.01 g/L and 2.76 g/L/d, respectively. Thus, the DSWPH is a nice and substitutable N source for lipid production by Y. lipolytica W29 in the fed-batch mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zinjarde, S.S.: Food-related applications of Yarrowia lipolytica. Food. Chem. 152, 1–10 (2014)

    Article  Google Scholar 

  2. Yorimitsu, T., Klionsky, D.J.: Autophagy: molecular machinery for self-eating. Cell. Death. Differ. 12, 1542–1552 (2005)

    Article  Google Scholar 

  3. Makri, A., Fakas, S., Aggelis, G.: Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 101, 2351–2358 (2010)

    Article  Google Scholar 

  4. Fontanille, P., Kumar, V., Christophe, G., Nouaille, R., Larroche, C.: Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 114, 443–449 (2012)

    Article  Google Scholar 

  5. Lu, Y., Zhai, Y., Liu, M., Wu, Q.: Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J. Appl. Phycol. 22, 573–578 (2010)

    Article  Google Scholar 

  6. Taskin, M., Ortucu, S., Aydogan, M.N., Arslan, N.P.: Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew. Energy 99, 198–204 (2016)

    Article  Google Scholar 

  7. Yu, X., Zheng, Y., Dorgan, K.M., Chen, S.: Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 6134–6140 (2011)

    Article  Google Scholar 

  8. Sarris, D., Galiotou-Panayotou, M., Koutinas, A.A., Komaitis, M., Papanikolaou, S.: Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J. Chem. Technol. Biot. 86, 1439–1448 (2011)

    Article  Google Scholar 

  9. Gao, C.F., Zhai, Y., Ding, Y., Wu, Q.Y.: Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy 87, 756–761 (2010)

    Article  Google Scholar 

  10. Sung, M., Seo, Y.H., Han, S., Han, J.: Biodiesel production from yeast Cryptococcus sp using Jerusalem artichoke. Bioresour. Technol. 155, 77–83 (2014)

    Article  Google Scholar 

  11. Ryu, B., Kim, K., Kim, J., Han, J., Yang, J.: Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp KRS101. Bioresour. Technol. 129, 351–359 (2013)

    Article  Google Scholar 

  12. Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L.: Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102, 6494–6501 (2011)

    Article  Google Scholar 

  13. Shi, X.Y., Li, T.Y., Wang, M., Wu, W.W., Li, W.J., Wu, Q.Y., Wu, F.A., Wang, J.: Converting defatted silkworm pupae by Yarrowia lipolytica for enhanced lipid production. Eur. J. Lipid. Sci. Technol. 119, 201600120 (2017)

    Google Scholar 

  14. Pramanik, B.N., Mirza, U.A., Ing, Y.H., Liu, Y., Bartner, P.L., Weber, P.C., Bose, A.K.: Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein. Sci. 11, 2676–2687 (2002)

    Article  Google Scholar 

  15. Song, X., Zhang, X., Kuang, C., Zhu, L., Zhao, X.: Batch kinetics and modeling of DHA production by S. limacinum OUC88. Food. Bioprod. Process. 88, 26–30 (2010)

    Article  Google Scholar 

  16. Liu, J.Z., Weng, L.P., Zhang, Q.L., Xu, H., Ji, L.N.: A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem. Eng. J. 14, 137–141 (2003)

    Article  Google Scholar 

  17. Zheng, F., Hu, B.: Thermo-responsive polymer coated fiber-in-tube capillary microextraction and its application to on-line determination of Co, Ni and Cd by inductively coupled plasma mass spectrometry (ICP-MS). Talanta 85, 1166–1173 (2011)

    Article  Google Scholar 

  18. Mondala, A., Hernandez, R., French, T., Green, M., Mcfarland, L., Ingram, L.: Enhanced microbial oil production by activated sludge microorganisms from sugarcane bagasse hydrolyzate. Renew. Energy 78, 114–118 (2014)

    Article  Google Scholar 

  19. Sattur, A.P., Ng, K.: Production of microbial lipids: I. Development of a mathematical model. Biotechnol. Bioeng. 34, 863–867 (1989)

    Article  Google Scholar 

  20. Leesing, R., Karraphan, P.: Kinetic growth of the isolated oleaginous yeast for microbial lipid production. Afr. J. Biotechnol. 10, 13867–13877 (2011)

    Article  Google Scholar 

  21. Feng, J.F., Huang, Y., Zhao, Q., Chen, Q.X.: Clinical significance of preoperative neutrophil lymphocyte ratio versus platelet lymphocyte ratio in patients with small cell carcinoma of the esophagus. Sci. World. J. 4, 504365 (2013)

    Google Scholar 

  22. Xu, K., Xu, P.: Betaine and beet molasses enhance l-lactic acid production by Bacillus coagulans. PLoS ONE 9, e100731 (2014)

    Article  Google Scholar 

  23. Wang, J., Wu, W., Wang, X., Wang, M., Wu, F.: An effective GC method for the determination of the fatty acid composition in silkworm pupae oil using a two-step methylation process. J. Serb. Chem. Soc. 80, 9–20 (2015)

    Article  Google Scholar 

  24. Yu, X., Dong, T., Zheng, Y., Miao, C., Chen, S.: Investigation of cell disruption methods for lipid extraction from oleaginous microorganisms. Eur. J. Lipid. Sci. Technol. 16, 31–32 (2014)

    Google Scholar 

  25. Yang, Z.K., Niu, Y.F., Ma, Y.H., Jiao, X., Zhang, M.H., Yang, W.D., Liu, J.S., Lu, S.H., Guan, Y., Li, H.Y.: Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels 6, 1–14 (2013)

    Article  Google Scholar 

  26. Mlícková, K., Roux, E., Athenstaedt, K., D’Andrea, S., Daum, G., Chardot, T., Nicaud, J.M.: Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl. Environ. Microb. 70, 3918–3924 (2004)

    Article  Google Scholar 

  27. Hamid, A.A., Mokhtar, N.F., Taha, E.M., Omar, O., Wan, M.W.Y.: The role of ATP citrate lyase, malic enzyme and fatty acid synthase in the regulation of lipid accumulation in Cunninghamella sp. 2A1. Ann. Microbiol. 61, 463–468 (2011)

    Article  Google Scholar 

  28. Garay, L.A., Boundymills, K.L., German, J.B.: Accumulation of high-value lipids in single-cell microorganisms:a mechanistic approach and future perspectives. J. Agr. Food. Chem. 62, 2709–2727 (2014)

    Article  Google Scholar 

  29. Elbaky, H.H.A., Elbaroty, G.S., Bouaid, A., Martinez, M., Aracil, J.: Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresour. Technol. 119, 429–432 (2012)

    Article  Google Scholar 

  30. Manikan, V., Kalil, S., Omar, O., Jalil, A.: Aidil: Effects of Mg2+, Fe3+, Mn2+ and Cu2+ ions on lipid accumulation by Cunninghamella bainieri 2A1. Sains. Malays. 43, 443–449 (2014)

    Google Scholar 

  31. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J., Molina-Jouve, C., Nicaud, J.: Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid. Res. 48, 375–387 (2009)

    Article  Google Scholar 

  32. Mba, O.I., Dumont, M.J., Ngadi, M.: Palm oil: processing, characterization and utilization in the food industry—a review. Food. Biosci. 10, 26–41 (2015)

    Article  Google Scholar 

  33. Ratledge, C., Wynn, J.P.: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–51 (2002)

    Article  Google Scholar 

  34. Beligon, V., Poughon, L., Christophe, G., Lebert, A., Larroche, C., Fontanille, P.: Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresour. Technol. 192, 582–591 (2015)

    Article  Google Scholar 

  35. Xu, J., Zhao, X., Wang, W., Du, W., Liu, D.: Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem. Eng. J. 65, 30–36 (2012)

    Article  Google Scholar 

  36. Ageitos, J.M., Vallejo, J.A., Veiga-Crespo, P., Villa, T.G.: Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biot. 90, 1219–1227 (2011)

    Article  Google Scholar 

  37. Saenge, C., Cheirsilp, B., Bourtoom, T.: Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol. Bioprocess Eng. 16, 23–33 (2011)

    Article  Google Scholar 

  38. Ferrante, G., Ohno, Y., Kates, M.: Influence of temperature and growth phase on desaturase activity of the mesophilic yeast Candida lipolytica. Can. J. Biochem. Cell. Biol. 61, 171–177 (1983)

    Article  Google Scholar 

  39. Ochoa-Estopier, A., Guillouet, S.E.: D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J. Biotechnol. 170, 35–41 (2014)

    Article  Google Scholar 

  40. Papanikolaou, S., Aggelis, G.: Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur. J. Lipid. Sci. Tech. 113, 1031–1051 (2011)

    Article  Google Scholar 

  41. Papanikolaou, S., Aggelis, G.: Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 82, 43–49 (2002)

    Article  Google Scholar 

  42. Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., Nicaud, J.M.: Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol. Biofuels 8, 104 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Research and Development Program (Modern Agriculture) of Jiangsu Province (BE2017322), the Six Talent Peaks Project of Jiangsu Province (2015-NY-018), the Qing Lan Project of Jiangsu Province (2014), the Shen Lan Young scholars program of Jiangsu University of Science and Technology (2015), and the China Agriculture Research System (CARS-18- ZJ0305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XH., Liu, ZX., Shi, XY. et al. Fed-Batch Fermentation of Yarrowia Lipolytica Using Defatted Silkworm Pupae Hydrolysate: A Dynamic Model-Based Approach for High Yield of Lipid Production. Waste Biomass Valor 9, 2399–2411 (2018). https://doi.org/10.1007/s12649-017-0180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0180-y

Keywords

Navigation