Skip to main content

Advertisement

Log in

H4SiW12O40-Catalyzed Levulinic Acid Esterification at Room Temperature for Production of Fuel Bioadditives

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, a route to synthesize bioadditives through H4SiW12O40-catalyzed levulinic acid esterification reactions with alcohols of short chain at room temperature was assessed. Among the Brønsted acids assessed (i.e., sulfuric, p-toluenesulfonic, silicotungstic, phosphomolybdic and phosphotungstic acids), H4SiW12O40 was the most active and selective catalyst. High conversions (ca. 90%) and selectivity (90–97%) for alkyl levulinates with carbon chain size ranging from C6 to C10 were obtained. The effect of main reaction parameters was studied, with a special focus on the reaction temperature, stoichiometry of reactants, concentration and nature of the catalyst. Insights on reaction mechanism were done and the activity of heteropoly catalysts was discussed based on acid strength and softness of the heteropolyanions. The use of renewable raw material, the mild reaction conditions (i.e., room temperature), and a recyclable solid catalyst are the some of the positive features of this process. The alkyl levulinates obtained are renewable origin bioadditives that can be blended either to gasoline or diesel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mukherjee, A., Dumont, M.-J., Raghavan, V.: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72, 143–183 (2015)

    Google Scholar 

  2. Rackemann, D.W., Doherty, W.O.S.: The conversion of lignocellulosic to levulinic acid. Biofuel Bioprod. Bioref. 5, 198–214 (2011)

    Google Scholar 

  3. Badgujar, K.C., Bhanage, B.M.: The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass Bioenergy 84, 12–21 (2016)

    Google Scholar 

  4. Kuwahara, Y., Kaburagi, W., Osada, Y., Fujitani, T., Yamashita, H.: Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica. Catal. Today 281, 418–428 (2017)

    Google Scholar 

  5. Chen, S.S., Maneerung, T., Tsang, D.C.W., Ok, Y.S., Wang, C.-H.: Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid. methyl ester by heterogeneous catalysts. Chem. Eng. J. 328, 246–273 (2017)

    Google Scholar 

  6. Tan, J., Liu, Q., Chen, L., Wang, T., Ma, L., Chen, G.: Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol–water system. J. Energy Chem. 26, 115–120 (2017)

    Google Scholar 

  7. De, S., Saha, B., Saha, B., Luque, R.: Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour. Technol. 178, 108–118 (2015)

    Google Scholar 

  8. Cirujano, F.G., Corma, A., Xamena, F.X.L.: Conversion of levulinic acid into chemicals: synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem. Eng. Sci. 124, 52–60 (2015)

    Google Scholar 

  9. Enumula, S.S., Gurram, V.R.B., Chada, R.R., Burri, D.R., Kamajaru, S.R.R.: Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. J. Mol. Catal. A 426, 30–38 (2017)

    Google Scholar 

  10. Zhang, J., Chen, J.: Modified solid acids derived from biomass based cellulose for one-step conversion of carbohydrates into ethyl levulinate. J. Energy Chem. 25, 747–753 (2016)

    Google Scholar 

  11. Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S., Joshi, P.N., Deshpande, S.S., Patil, V.S., Bokade, V.V.: Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-S as catalyst. Appl. Catal. A 90, 460–461 (2013)

    Google Scholar 

  12. Pileidis, F.D., Titirici, M.M.: Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9, 562–582 (2016)

    Google Scholar 

  13. Omoruyi, U., Page, S., Hallett, J., Miller, P.W.: Homogeneous Catalyzed reactions of levulinic acid: to γ-valerolactone and beyond. ChemSusChem 9(16), 2037–2047 (2016)

    Google Scholar 

  14. Tiong, Y.W., Yap, C.L., Gan, S., Yap, W.S.P.: Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Ind. Eng. Chem. Res. 57, 4749–4766 (2018)

    Google Scholar 

  15. Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Vaccaro, L.: Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production, Prog. Energy Comb. Sci. 65, 136–162 (2018)

    Google Scholar 

  16. Mika, L.T., Cséfalvay, E., Németh, Á: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118(2), 505–613 (2018)

    Google Scholar 

  17. Windom, B.C., Lovestead, T.M., Mascal, M., Nikitin, E.B., Bruno, T.J.: Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 25, 1878–1889 (2011)

    Google Scholar 

  18. Choudhary, V., Pinar, A.B., Lobo, R.F., Vlachos, D.G., Sandler, S.I.: Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 6, 2369–2376 (2013)

    Google Scholar 

  19. Liu, Y.J., Lotero, E., Goodwin Jr, J.G.: A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J. Catal. 242, 278–286 (2006)

    Google Scholar 

  20. Su, F., Guo, Y.: Advancements in solid acid catalysts for biodiesel production. Green Chem. 16, 2934–2957 (2014)

    Google Scholar 

  21. Reddy, B.M., Patil, M.K.: Organic syntheses and transformations. catalyzed by sulfated zirconia. Chem. Rev. 109, 2185–2208 (2009)

    Google Scholar 

  22. Alsalme, A.M., Wiper, P.V., Khimyak, Y.Z., Kozhevnikova, E.F., Kozhevikov, I.V.: Solid acid catalysts based on H3PW12O40 heteropoly acid: acid and catalytic properties at a gas-solid interface. J. Catal. 276, 181–189 (2010)

    Google Scholar 

  23. Zuo, D., Lane, J., Culy, D., Schultz, M., Pullar, A., Waxman, M.: Biodiesel production from jatropha curcas crude oil using Zno/SiO2 photocatalytic for free fatty acids esterification. Appl. Catal. B 129, 342–350 (2013)

    Google Scholar 

  24. Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Domen, K., Hayashi, S.: A carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 43, 2955–2958 (2004)

    Google Scholar 

  25. Nakajima, K., Hara, M.: Amorphous carbon with SO3H groups as a solid brønsted acid catalyst. ACS Catal. 2, 1296–1304 (2012)

    Google Scholar 

  26. Pileidis, F.D., Tabassum, M., Coutts, S., Titirici, M.M.: Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin. J. Catal. 35, 929–936 (2014)

    Google Scholar 

  27. Fraile, J.M., García-Bordejé, E., Roldán, L.: Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: evidences for sulfonic esters formation. J. Catal. 289, 73–79 (2012)

    Google Scholar 

  28. Song, D., An, S., Lu, B., Guo, Y., Leng, J.: Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl. Catal. B 179, 445–457 (2015)

    Google Scholar 

  29. Peng, L., Gao, X., Chen, K.: Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel 160, 123–131 (2015)

    Google Scholar 

  30. Bregeault, J.-M., Vennat, M., Salles, L., Piquemal, J.-Y., Mahha, Y., Briot, E., Bakala, P.C., Atlamsani, A., Thouvenot, R.: From polyoxometalates to polyoxoperoxometalates and back again; potential applications. J. Mol. Catal. A 250, 177–189 (2006)

    Google Scholar 

  31. Haber, J., Pamin, K., Matachowski, L., Mucha, D.: Catalytic performance of the dodecatungstophosphoric acid on different supports. Appl. Catal. A 256, 141–152 (2003)

    Google Scholar 

  32. Yadav, G.D.: Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal. Surv. Asia 9(2), 117–137 (2005)

    MathSciNet  Google Scholar 

  33. Sawant, D.P., Vinu, A., Justus, J., Srinivasu, P., Halligudi, S.B.: Catalytic performances of silicotungstic acid/zirconia supported SBA-15 in an esterification of benzyl alcohol with acetic acid. J. Mol. Catal. A 276, 150–157 (2007)

    Google Scholar 

  34. Avhad, M.R., Marchetti, J.M.: A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 50, 696–718 (2015)

    Google Scholar 

  35. Sambeth, J., Romanelli, G., Autino, J.C., Thomas, J., Baronetti, G.: A theoretical experimental study of Wells-Dawson phospho-tungstic heteropolyacid: an explanation of the pseudo liquid or surface-type behavior. Appl. Catal. A 378, 114–118 (2010)

    Google Scholar 

  36. Narkhede, N., Singh, S., Patel, A.: Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification. Green Chem. 17, 89–107 (2015)

    Google Scholar 

  37. Zhou, Y., Chen, G., Long, Z., Wang, J.: Recent advances in polyoxometalate-based heterogeneous catalytic material for liquid-phase organic transformations. RSC Adv. 4, 42092–42113 (2014)

    Google Scholar 

  38. Da Silva, M.J., Liberto, N.A.: Soluble and solid-supported Keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr. Org. Chem. 20, 1263–1283 (2015)

    Google Scholar 

  39. Yan, K., Wu, G., Wen, J., Chen, A.: One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and. ethyl levulinate biodiesel. Catal. Commun. 34, 58–63 (2013)

    Google Scholar 

  40. Pasquale, G., Vázquez, P., Romanelli, G., Baronetti, G.: Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells–Dawson heteropolyacid as catalyst. Catal. Commun. 18, 115–120 (2012)

    Google Scholar 

  41. Song, D., An, S., Sun, Y., Guo, Y.: Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J. Catal. 333, 184–199 (2016)

    Google Scholar 

  42. Pizzio, L.R., Vásquez, P.G., Cáceres, C.V., Blanco, M.N.: Supported Keggin type heteropoly compounds for ecofriendly reactions. Appl. Catal. A 256, 125–139 (2003)

    Google Scholar 

  43. Silva, V.W.G., Laier, L.O., Da Silva, M.J.: Novel H3PW12O40: catalyzed esterification reactions of fatty acids at room temperatures for biodiesel production. Catal. Lett. 135, 207–211 (2010)

    Google Scholar 

  44. Da Silva, M.J., Julio, A.A., Dorigetto, F.C.S.: Solvent free heteropolyacid-catalyzed glycerol ketalization at room temperature. RSC Adv. 5, 44499–44506 (2015)

    Google Scholar 

  45. Timofeeva, M.N.: Acid catalysis by heteropoly acids. Appl. Catal. A 256, 19–35 (2003)

    Google Scholar 

  46. Micek-Ilnicka, A.: The role of water in the catalysis on solid heteropolyacids. J. Mol. Catal. A 308(1–2), 1–14 (2009)

    Google Scholar 

  47. Raveendra, G., Rajasekhar, A., Srinivas, M., Prasad, P.S., Lingaiah, N.: Selective etherification of hydroxymethylfurfural to biofuel additives over Cs containing silicotungstic acid catalysts. Appl. Catal. A 520, 105–113 (2016)

    Google Scholar 

  48. An, S., Song, D., Lu, B., Yang, X., Guo, Y.H.: Morphology tailoring of sulfonic acid functionalized organosilica nanohybrids for the synthesis of biomass-derived alkyl levulinates. Chem. Eur. J. 21, 10786–10798 (2015)

    Google Scholar 

  49. Tejero, M.A., Ramìrez, E., Fitè, C., Tejero, J., Cunill, F.: Esterification of levulinic acid with butanol over ion exchange resins. Appl. Catal. A 517, 55–56 (2016)

    Google Scholar 

  50. Trombettoni, V., Bianchi, L., Zupanic, A., Porciello, A., Cuomo, M., Piermatti, I.D.O., Marrocchi, A., Vaccaro, L.: Efficient catalytic upgrading of levulinic acid into alkyl levulinates by resin-supported acids and flow reactors. Catalysts 7(8), 235–249 (2017)

    Google Scholar 

  51. Su, F., Ma, L., Song, D., Zhang, X., Guo, Y.: Design of a highly ordered mesoporous H3PW12O40/ZrO2–Si(Ph)Si hybrid catalyst for methyl levulinate synthesis. Green Chem. 15, 885–890 (2013)

    Google Scholar 

  52. Izumi, Y., Urabe, K., Onaka, A.: Zeolite, Clay, and Heteropolyacids in Organic Reactions. Tokio-VCH, Kodansha, Weinheim (1992)

    Google Scholar 

  53. Ren, Y., Liu, B., Zhang, Z., Lin, J.: Silver-exchanged heteropolyacid catalyst (Ag1H2PW): an efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. J. Ind. Eng. Chem. 21, 1127–1131 (2015)

    Google Scholar 

  54. Trombettoni, V., Sciosci, D., Bracciale, M.P., Campana, F., Santarelli, M.L., Marrocchi, A., Vaccaro, L.: Boosting biomass valorisation. Synergistic design of continuous flow reactors and water-tolerant polystyrene acid catalysts for a non-stop production of esters. Green Chem. 20, 3222–3396 (2018)

    Google Scholar 

  55. Timofeeva, M.N., Matrosova, M.M., Maksimov, G.M., Likholobov, V.A., Golovin, A.V., Maksimovskaya, R.I., Paukshtis, E.A.: Esterification of n-butanol with acetic acid in the presence of heteropoly acids with different structures and compositions. Kinet. Catal. 42, 868–871 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brazil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio José da Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilanculo, C.B., de Andrade Leles, L.C. & da Silva, M.J. H4SiW12O40-Catalyzed Levulinic Acid Esterification at Room Temperature for Production of Fuel Bioadditives. Waste Biomass Valor 11, 1895–1904 (2020). https://doi.org/10.1007/s12649-018-00549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-00549-x

Keywords

Navigation