Skip to main content
Log in

Physicochemical Characterization of Robusta Spent Coffee Ground Oil for Biodiesel Manufacturing

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Oil extracted from spent coffee ground (SCG) has been well known as a potential feedstock for high quality biodiesel production. This work was to investigate extraction, physical and chemical characterizations of Robusta coffee oil (CO) and its application for biodiesel production. Analysis of seven coffee ground (CG) samples showed that oil content in CGs depended on technique of the manufacturer. Morphological changes of CGs surface were recorded by FESEM technique which showed the particle size significantly increased with the oil loss. Infrared spectroscopies revealed absence of SCG oil in the de-oiled SCG, confirmed that soxhlet method in hexane was used efficiently for the oil extraction. Thermal properties of SCG oil, fresh coffee ground (FCG), SCG and de-oiled SCG samples were investigated by simultaneous TG–DTA measurement. The obtained data showed the oil content relating to thermal changes of SCG samples. Comparison between chemical components of Robusta coffee bean (RCB) and SCG reflected a fact that most of oil content in the SCG could be originated in manufacturing process of FCG. Quality biodiesel product has prepared from SCG oils via a two-step process. After pre-treatment process, transesterification of SCG oils was carried out with methanol (v/v, 30%) and NaOH (w/v, 1%) in yield 89.2%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SCG:

Spent coffee ground

CO:

Coffee oil

RCB:

Robusta coffee bean

FCG:

Fresh coffee ground

TG:

Thermogravimetric

DTA:

Differential thermal analysis

FA:

Fatty acid

FFA:

Free fatty acid

FAME:

Fatty acid methyl ester

References

  1. Luque, R., Lovett, J.C., Datta, B., Clancy, J., Campelo, J.M., Romero, A.A.: Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ. Sci. 3, 1706–1721 (2010). https://doi.org/10.1039/C0EE00085J

    Article  Google Scholar 

  2. Goodwin, A.R.H.: The future of oil and gas fossil fuels. In: Letcher, T. M. (ed.) Future Energy Improved, Sustainable and Clean Options for Our Planet, pp. 3–24. Elsevier, New York (2008)

  3. International Coffee Organization (ICO): Total production by all exporting countries. http://www.ico.org. Accessed 10 September 2016

  4. Marsh, A.: Diversification by Smallholder Farmers: Viet Nam Robusta Coffee. FAO, Rome (2007)

    Google Scholar 

  5. Dhaeze, D., Deckers, J., Raes, D., Phong, T.A., Loi, H.V.: Environmental and socio-economic impacts of institutional reforms on the agricultural sector of Vietnam: land suitability assessment for Robusta coffee in the Dak Gan region. Agric. Ecosyst. Environ. 105, 59–76 (2005). https://doi.org/10.1016/j.agee.2004.05.009

    Article  Google Scholar 

  6. Graboski, M.S., McCornick, R.L.: Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24, 125–164 (1998). https://doi.org/10.1016/S0360-1285(97)00034-8

    Article  Google Scholar 

  7. Marchetti, J.M., Miguel, V.U., Errazu, A.F.: Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 11, 1300–1311 (2007). https://doi.org/10.1016/j.rser.2005.08.006

    Article  Google Scholar 

  8. Balat, M.: Production of biodiesel from vegetable oils: a survey. Energy Source A 29, 895–913 (2007). https://doi.org/10.1080/00908310500283359

    Article  Google Scholar 

  9. Norjannah, B., Ong, H.C., Masjuki, H.H., Juan, J.C., Chong, W.T.: Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Adv. 6, 60034–60055 (2016). https://doi.org/10.1039/C6RA08062F

    Article  Google Scholar 

  10. Antolin, G., Tinaut, F.V., Briceno, Y., Castrano, V., Perez, C., Ramirez, A.I.: Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 83, 111–114 (2002). https://doi.org/10.1016/S0960-8524(01)00200-0

    Article  Google Scholar 

  11. Al-Hamamre, Z., Foerster, S., Hartmann, F., Kroger, M., Kaltschmitt, M.: Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96, 70–76 (2012). https://doi.org/10.1016/j.fuel.2012.01.023

    Article  Google Scholar 

  12. Phan, A.N., Phan, T.M.: Biodiesel production from waste cooking oils. Fuel 87, 3490–3496 (2008). https://doi.org/10.1016/j.fuel.2008.07.008

    Article  Google Scholar 

  13. Bankovic-Ilic, I.B., Stojkovic, I.J., Stamenkovic, O.S., Veljkovic, V.B., Hung, Y.T.: Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev. 32, 238–254 (2014). https://doi.org/10.1016/j.rser.2014.01.038

    Article  Google Scholar 

  14. Rodriguez, R.P., Melo, E.A.: Conversion of by-products from the vegetable oil industry into biodiesel and its use in internal combustion engines: a review. Braz. J. Chem. Eng. 31, 287–301 (2014). https://doi.org/10.1590/0104-6632.20140312s00002763

    Article  Google Scholar 

  15. Yanagimoto, K., Ochi, H., Lee, K.G., Shibamoto, T.J.: Antioxidative activities of fractions obtained from brewed coffee. J. Agric. Food Chem. 52, 592–596 (2004). https://doi.org/10.1021/jf030317t

    Article  Google Scholar 

  16. Oliveira, L.S., Franca, A.S., Camargos, R.R.S., Ferraz, V.P.: Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 99, 3244–3250 (2007). https://doi.org/10.1016/j.biortech.2007.05.074

    Article  Google Scholar 

  17. Arpa, O., Yumrutas, R., Demirbas, A.: Production of diesel-like fuel from waste engine oil by pyrolitic distillation. Appl. Energy 87, 122–127 (2010). https://doi.org/10.1016/j.apenergy.2009.05.042

    Article  Google Scholar 

  18. Chen, J., Jiang, J.C., Nie, X.A., Xu, J.M., Chang, X., Li, K.: Diesel-like fuel production from catalytic cracking and esterification of waste oil. J. Renew. Sustain. Energy 5, 052004 (2013). https://doi.org/10.1063/1.4822035

    Article  Google Scholar 

  19. Phimsen, S., Kiatkittipong, W., Yamada, H., Tagawa, T., Kiatkittipong, K., Laosiripojana, N., Assabumrungrat, S.: Oil extracted from spent coffee grounds for bio-hydrotreated diesel production. Energy Convers. Manag. 126, 1028–1036 (2016). https://doi.org/10.1016/j.enconman.2016.08.085

    Article  Google Scholar 

  20. Go, A.W., Sutanto, S., Ong, L.K., Tran-Nguyen, P.L., Ismadji, S., Ju, Y.H.: Developments in in-situ (trans) esterification for biodiesel production: a critical review. J. Renew. Sustain. Energy 60, 284–305 (2016). https://doi.org/10.1016/j.rser.2016.01.070

    Article  Google Scholar 

  21. Borges, M.E., Díaz, L.: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012). https://doi.org/10.1016/j.rser.2012.01.071

    Article  Google Scholar 

  22. Bajaj, A., Lohan, P., Jha, P.N., Mehrotra, R: Biodiesel production through lipase catalyzed transesterification: an overview. J. Mol. Catal. B 62, 9–14 (2010). https://doi.org/10.1016/j.molcatb.2009.09.018

    Article  Google Scholar 

  23. Laosiripojana, N., Kiatkittipong, W., Sutthisripok, W., Assabumrungrat, S.: Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts. Bioresour. Technol. 101, 8416–8423 (2010). https://doi.org/10.1016/j.biortech.2010.05.076

    Article  Google Scholar 

  24. Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P.: Hand Book of Food Analytical Chemistry Water, Proteins, Enzymes, Lipids and Carbohydrates. Wiley, Hoboken (2000)

    Google Scholar 

  25. Jain, Z., Xuanjun, W., Qilong, H., Mingjun, H., Shuyan, L.: Physicochemical properties, combustion and emission performance of a novel Zanthoxylum bungeanum seed oil methylic ester biodiesel. Int. J. Green Energy 12, 1255–1262 (2015). https://doi.org/10.1080/15435075.2014.892492

    Article  Google Scholar 

  26. Poojary, S., Rao, C.V., Venkatesh, K.H.: Scleropyrum pentandrum (Dennst.) mabb—oil as a feedstock for biodiesel production—engine performance and emission studies. Int. J. Green Energy 14, 279–288 (2017). https://doi.org/10.1080/15435075.2016.1254637

    Article  Google Scholar 

  27. Kondamudi, N., Mohapatra, S.K., Misra, M.: Spent coffee grounds as a Versatile source of green energy. J. Agric. Food Chem. 56, 11757–11760 (2008). https://doi.org/10.1021/jf802487s

    Article  Google Scholar 

  28. Banerjee, A., Singh, V., Solanki, K., Mukherjee, J., Gupta, M.N.: Combi-protein coated microcrystals of lipases for production of biodiesel from oil from spent coffee. Sustain. Chem. Process. 1, 1–9 (2013). https://doi.org/10.1186/2043-7129-1-14

    Article  Google Scholar 

  29. Haile, M., Asfaw, A., Asfaw, N.: Investigation of waste coffee ground as a potential raw material for biodiesel production. Int. J. Renew. Energy Res. 3, 854–860 (2013)

    Google Scholar 

  30. Atabani, A.E., Mercimek, S.M., Arvindnarayan, S., Shobana, S., Kumar, G., Cadir, M., Al-Muhatseb, A.H.: Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: an experimental study. J. Air Waste Manag. Assoc. (2017). https://doi.org/10.1080/10962247.2017.1367738

    Google Scholar 

  31. Mateus, M.L., Rouvet, M., Gumy, J.C., Liardon, R.: Interactions of water with roasted and ground coffee in the wetting process investigated by a combination of physical determinations. J. Agric. Food Chem. 55, 2979–2984 (2007). https://doi.org/10.1021/jf062841g

    Article  Google Scholar 

  32. Anderson, B.A., Shimoni, E., Liardon, R., Labuza, T.P.: The diffusion kinetics of carbon dioxide from fresh roasted and ground coffee. J. Food. Eng. 59, 71–78 (2003). https://doi.org/10.1016/S0260-8774(02)00432-6

    Article  Google Scholar 

  33. Raba, D.N., Poiana, M.A., Borozan, A.B., Stef, M., Radu, F., Popa, M.V.: Investigation on crude and high-temperature heated coffee oil by ATR-FTIR spectroscopy along with antioxidant and antimicrobial properties. PLoS ONE 10, e0138080 (2015). https://doi.org/10.1371/journal.pone.0138080

    Article  Google Scholar 

  34. Garrigues, J.M., Bouhsain, Z., Garrigues, S., Guardia, M.D.L.: Fourier transform infrared determination of caffeine in roasted coffee samples. Fresenius J. Anal. Chem. 366, 319–322 (2000). https://doi.org/10.1007/s002160050063

    Article  Google Scholar 

  35. Wang, J., Jun, S., Bittenbender, H.C., Gautz, L., Li, Q.X.: Fourier transform infrared spectroscopy for Kona coffee authentication. J. Food Sci. 74, C385–C391 (2009). https://doi.org/10.1111/j.1750-3841.2009.01173.x

    Article  Google Scholar 

  36. Lyman, D.J., Benck, R., Dell, S., Merle, S., Murray-Wijelath, J.: FTIR-ATR analysis of brewed coffee: effect of roasting conditions. J. Agric. Food Chem. 51, 3268–3272 (2003). https://doi.org/10.1021/jf0209793

    Article  Google Scholar 

  37. Todaka, M., Kowhakul, W., Masamoto, H., Shigematsu, M.: Thermal analysis and dust explosion characteristics of spent coffee grounds and jatropha. J. Loss Prev. Process Ind. 44, 538–543 (2016). https://doi.org/10.1016/j.jlp.2016.08.008

    Article  Google Scholar 

  38. Silva, M.A., Nebra, S.A., Silva, M.J.M., Sanchez, C.G.: The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy 14, 457–467 (1998). https://doi.org/10.1016/S0961-9534(97)10034-4

    Article  Google Scholar 

  39. Somnuk, K., Eawlex, P., Prateepchaikul, G.: Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process. Agric. Nat. Resour. 51, 181–189 (2017). https://doi.org/10.1016/j.anres.2017.01.003

    Google Scholar 

  40. Jenkins, R.W., Stageman, N.E., Fortune, C.M., Chuck, C.J.: Effect of the type of bean, processing and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels 28, 1166–1174 (2014). https://doi.org/10.1021/ef4022976

    Article  Google Scholar 

  41. Vila, M.A., Andueza, S., Pena, M.P.D., Cid, C.: Fatty acid evolution during the storage of ground, roasted coffees. J. Am. Oil Chem. Soc. 82, 639–646 (2005). https://doi.org/10.1007/s11746-005-1122-1

    Article  Google Scholar 

  42. Speer, I.K., Speer, K.: The lipid fraction of the coffee bean. Braz. J. Plant. Physiol. 8, 201–216 (2006). https://doi.org/10.1590/S1677-04202006000100014

    Article  Google Scholar 

  43. Knothe, G.: Some aspects of biodiesel oxidative stability. Fuel Process Technol. 88, 669–677 (2007). https://doi.org/10.1016/j.fuproc.2007.01.005

    Article  Google Scholar 

  44. Burton, R., Fan, X., Austic, G.: Evaluation of two-step reaction and enzyme catalysis approaches for biodiesel production from spent coffee grounds. Int. J. Green Energy 7, 530–536 (2010). https://doi.org/10.1080/15435075.2010.515444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Danh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, CH., Nguyen, TD. Physicochemical Characterization of Robusta Spent Coffee Ground Oil for Biodiesel Manufacturing. Waste Biomass Valor 10, 2703–2712 (2019). https://doi.org/10.1007/s12649-018-0287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0287-9

Keywords

Navigation