Skip to main content

Advertisement

Log in

Recycling Wastes in Concrete Production: Performance and Eco-toxicity Assessment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The growing concern about the environmental sustainability, the risk of natural resources depletion and the increase amount of wastes generation endorse the need to develop new materials, namely for the construction industry. However, both the technical performance and the environmental behaviour of new materials are key factors in their acceptance. In this work it was intended to evaluate the effect of aggregates substitution by different wastes in the concrete production. Wastes from local industries (biomass fly ashes and lime sludge) were used for replacing 50 and 100% of the natural fine aggregates. The fresh and hardened properties of the concrete samples were evaluated and the environmental eco-toxicity was assessed by bioassays using duckweed and microorganisms as biomarkers. Bioleaching tests were done with the same materials in order to evaluate the concrete effect in biological activity. The results showed that the addition of wastes to the concrete mix lead to a slight decrease in the compressive strength when fly ashes were used (3%), but 35% decrease when lime was the replacing waste. The duckweed grow did not show different performances between conventional concrete and concrete produced with fly ashes or lime sludge but bioleaching revealed possible negative effect in micro species when compared with control. In bacterial growth the effect was more evident with a significant different behaviour between the control and the concrete assays, but also with the traditional concrete showing a higher negative effect in the development of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Milà i Canals, L., Bauer, C., Depestele, J., Dubreuil, A., Knuchel, R.F., Gaillard, G., Michelsen, O., Müller-Wenk, R., Rydgren, B.: Key elements in a framework for land use impact assessment within LCA. Int. J. LCA 12(1), 5–15 (2007)

    Article  Google Scholar 

  2. Carvalho, F.P.: Mining industry and sustainable development: time for change. Food Energy Secur. 6(2), 61–77 (2017)

    Article  Google Scholar 

  3. James, J., Pandian, P.K.: A short review on the valorisation of sugarcane bagasse ash in the manufacture of stabilized/sintered earth blocks and tiles. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/1706893

    Article  Google Scholar 

  4. Siddique, R.: Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34, 487–493 (2004)

    Article  Google Scholar 

  5. Ann, K.Y., Moon, H.Y., Kim, Y.B., Ryou, J.: Durability of recycled aggregate concrete using pozzolanic materials. Waste Manag. 28(6), 993–999 (2008)

    Article  Google Scholar 

  6. Faleschini, F., Zanini, M.A., Brunelli, K., Pellegrino, C.: Valorization of co-combustion fly ash in concrete production. Mater. Des. 85, 687–694 (2015)

    Article  Google Scholar 

  7. Batayneh, M., Marie, I., Asi, I.: Use of selected waste materials in concrete mixes. Waste Manag. 27, 1870–1876 (2007)

    Article  Google Scholar 

  8. Su, H., Yang, J., Ling, T., Ghataora, G., Dirar, S.: Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. J. Clean. Prod. 91, 288–296 (2015)

    Article  Google Scholar 

  9. Wagih, A., El-Karmoty, H., Ebid, M., Okba, S.: Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC J. 9, 193–200 (2013)

    Article  Google Scholar 

  10. Ghernouti, Y., Rabehi, B., Safi, B., Chaid, R.: Use of recycled plastic bag waste in the concrete. J. Int. Sci. Publ.: Mater. Methods Technol. 8, 480–487 (2014)

    Google Scholar 

  11. Malešev, M., Radonjanin, V., Marinković, S.: Recycled concrete as aggregate for structural concrete production. Sustainability 2, 1204–1225 (2010)

    Article  Google Scholar 

  12. Junak, J., Sicakova, A.: Concrete containing recycled concrete aggregate with modified surface. Proced. Eng. 180, 1284–1291 (2017)

    Article  Google Scholar 

  13. Siddique, R., Khatib, J., Kaur, I.: Use of recycled plastic in concrete: a review. Waste Manag. 28, 1835–1852 (2008)

    Article  Google Scholar 

  14. Silva, R.V., Brito, J., Dhir, R.K.: Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201–217 (2014)

    Article  Google Scholar 

  15. Zimbili, O., Salim, W., Ndambuki, M.: A review on the usage of ceramic wastes in concrete production. world academy of science, engineering and technology. Int. J. Civil Environ. Eng. 8(1), 91–95 (2014)

    Google Scholar 

  16. Rozas, F., Castillo, A., Martínez, I., Castellote, M.: Guidelines for assessing the valorization of a waste into cementitious material: dredged sediment for production of self compacting concrete. Mater. Constr. 65(319), e057 (2015). https://doi.org/10.3989/mc.2015.10613

    Article  Google Scholar 

  17. Winder, C., Carmody, M.: The dermal toxicity of cement. Toxicol. Ind. Health 18, 321–331 (2002)

    Article  Google Scholar 

  18. Choi, J.B., Bae, S.M., Shin, T.Y., Ahn, K.Y., Woo, S.D.: Evaluation of daphnia magna for the ecotoxicity assessment of alkali leachate from concrete. Int. J. Ind. Entomol. 26, 41–46 (2013)

    Google Scholar 

  19. Mishra, D., Kim, D.J., Ahn, J.G., Rhee, Y.H.: Bioleaching: a microbial process of metal recovery; a review. Met. Mater. Int. 11, 249–256 (2005)

    Article  Google Scholar 

  20. Yang, Z., Zhang, Z., Chai, L., Wang, Y., Liu, Y., Xiao, R.: Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J. Hazard. Mater. 301, 145–152 (2016)

    Article  Google Scholar 

  21. Drobíková, K., Rozumová, L., Otoupalíková, H., Seidlerová, J.: Bioleaching of hazardous waste. Chem. Pap. 69, 1193–1201 (2015)

    Article  Google Scholar 

  22. Gadd, G.M.: Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010)

    Article  Google Scholar 

  23. EN 933-1:2012: Tests for geometrical properties of aggregates—Part 1: Determination of particle size distribution—Sieving method. (2012)

  24. EN 933-4:2008: Tests for geometrical properties of aggregates—Part 4: Determination of particle shape—Shape index (2008)

  25. EN 933-3:2012: Tests for geometrical properties of aggregates—Part 3: Determination of particle shape—Flakiness index (2012)

  26. EN 933-8:2012 + A1: 2015—Tests for geometrical properties of aggregates - Part 8: Assessment of fines—Sand equivalent test (2015)

  27. EN 1097-2:2010: Tests for mechanical and physical properties of aggregates—Part 2: Methods for the determination of resistance to fragmentation (2010)

  28. EN 1097-3:1998: Tests for mechanical and physical properties of aggregates—Part 3: Determination of loose bulk density and voids (1998)

  29. NP EN 12390-1: Ensaios do betão endurecido Parte—1: Forma, dimensões e outros requisitos para o ensaio de provetes e para os moldes. Instituto Português da Qualidade (2012), Lisboa (2012)

  30. NP EN 12390-2:2009: Ensaios do betão endurecido Parte—2: Execução e cura dos provetes para ensaios de resistência mecânica. Instituto Português da Qualidade, Lisboa (2009)

    Google Scholar 

  31. EN 12350-2:2012: Testing fresh concrete—Part 2: Slump-test. (2012)

  32. EN 12350-7:2009: Testing fresh concrete—Part 7: Air content—Pressure methods. (2009)

  33. EN 12350-6:2009: Testing fresh concrete—Part 6: Density. (2009)

  34. NP EN 12390-3: Ensaios do betão endurecido Parte—3: Resistência à compressão dos provetes, para ensaios de resistência mecânica. Instituto Português da Qualidade, Lisboa (2009)

    Google Scholar 

  35. NP EN 12390-6: 2003 Ensaios ao betão endurecido. Parte 6: Resistência à tração por compressão dos provetes. Instituto Português da Qualidade (2003)

  36. ISO 15148:2002: Hygrothermal performance of building materials and products—Determination of water absorption coefficient by partial immersion. International Organization for Standardization (2002)

  37. EN 12457-4:2002: Characterization of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 L kg– 1 for Materials with Particle Size Below 10 mm (Without or With Size Reduction). CEN, Brussels (2002)

    Google Scholar 

  38. American Water Works Association, APHA: Standard methods for examination of water and wastewater. 20th edition, Water Environment Federation (1998)

  39. EN ISO 9888:1999: Water quality—evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium—static test (1999)

  40. Lapa, N., Bernardo, M., Dias, D.A.C.M., Godinho, D.: Bioleaching of concrete and concretes containing bottom ashes from MSWI plants. In: Proceedings of WASTES: Solutions, Treatments and Opportunities—3rd International Conference, Viana do Castelo, Portugal (2015)

  41. EN 206:2013: Concrete—Specification, performance, production and conformity (2013)

  42. Ravina, D.: Slump Loss of Fly Ash Concrete. Concrete International (1984)

  43. Rajamma, R., Ball, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., Ferreira, V.M.: Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 172, 1049–1060 (2009)

    Article  Google Scholar 

  44. Hebhoub, H., Aoun, H., Belachia, M., Houari, H., Ghorbel, E.: Use of waste marble aggregates in concrete. Constr. Build. Mater. 25, 1167–1171 (2011)

    Article  Google Scholar 

  45. Omar, M.O., Elhameed, G.D.A., Sherif, M.A., Mohamadien, H.A.: Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties. HBRC J. 8, 193–203 (2012)

    Article  Google Scholar 

  46. Andre, A., Brio, J., Rosa, A., Pedro, D.: Durability performance of concrete incorporating coarse aggregate from marble industry waste. J. Clean. Prod. 65, 289–396 (2014)

    Article  Google Scholar 

  47. Tran, H.: Lime Kiln Chemistry and Effects on Kiln Operations. Pulp & Paper Centre and Department of Chemical Engineering and Applied Chemistry University of Toronto, Canada (2007)

    Google Scholar 

  48. Rezvani, M., Proske, T.: Influence of chemical-mineralogical properties of limestone on the shrinkage behaviour of cement paste and concrete made of limestone-rich cements. Constr. Build. Mater. 157, 818–828 (2017)

    Article  Google Scholar 

  49. Rashad, A.M.: A brief on high-volume Class F fly ash as cement replacement—A guide for civil engineer. Int. J. Sustain. Built Environ. 4, 278–306 (2015)

    Article  Google Scholar 

  50. Cayuela, M.L., Millner, P., Slovin, J., Roig, A.: Duckweed (Lemna gibba) growth inhibition bioassay for evaluating the toxicity of olive mill wastes before and during composting. Chemosphere 68, 1985–1991 (2007)

    Article  Google Scholar 

  51. Hamilton, K., Nelson, W., Curley, J.: Toxicological evaluation of the effects of waste-to-energy ash-concrete on two marine species. Environ. Toxicol. Chem. 12, 1919–1930 (1993)

    Article  Google Scholar 

  52. Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A.: Quality assessment of composts in the Greek market: the need for standards and quality assurance. J. Environ. Manag. 80, 58–65 (2006)

    Article  Google Scholar 

  53. Streit, N.M., Canterle, L.P., Canto, M.W., Hecktheuer, L.H.H.: The Chlorophylls. Cienc. Rural 35, 748–755 (2005)

    Article  Google Scholar 

  54. Chiang, Y.W., Santos, R.M., Monballiu, A., Ghyselbrecht, K., Martens, J.A., Mattos, M.L.T., Gerven, T.V., Meesschaert, B.: Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials. Miner. Eng. 48, 116–125 (2013)

    Article  Google Scholar 

  55. Lors, C., Chehade, M.H., Damidot, D.: pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration. Int. Biodeter. Biodegr. 63, 880–883 (2009)

    Article  Google Scholar 

  56. Jardim, W.F.: Medição e interpretação de valores do potencial redox (EH) em matrizes ambientais. Quim. Nova 37, 1233–1235 (2014)

    Google Scholar 

  57. Hillier, S.R., Sangha, C.M., Plunkett, B.A., Walden, P.J.: Long-term leaching of toxic trace metals from Portland cement concrete. Cem. Concr. Res. 29, 515–521 (1999)

    Article  Google Scholar 

  58. Lu, H., Wei, F., Tang, J., Giesy, J.P.: Leaching of metals from cement under simulated environmental conditions. J. Environ. Manag. 169, 319–327 (2016)

    Article  Google Scholar 

  59. Engelsen, C.J., van der Sloot, H.A., Petkovic, G.: Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction. Sci. Total Environ. 587–588, 94–101 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is an extension of the work presented at ICEER2017 and published in Energy Procedia. This work is financed by national funds through FCT - Fundação para a Ciência e Tecnologia, I.P., under the project UID/Multi/04016/2016. Furthermore, we would like to thank the Instituto Politécnico de Viseu and CI&DETS for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Brás.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brás, I., Silva, P.C., Almeida, R.M.S.F. et al. Recycling Wastes in Concrete Production: Performance and Eco-toxicity Assessment. Waste Biomass Valor 11, 1169–1180 (2020). https://doi.org/10.1007/s12649-018-0382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0382-y

Keywords

Navigation