Skip to main content
Log in

Solid State Fermentation of Brewer’s Spent Grain Using Rhizopus sp. to Enhance Nutritional Value

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study a valuable fermented brewer’s spent grain (BSG) was obtained by solid state fermentation (SSF) with Rhizopus sp. and assessed for feed and food applications. SSF conditions were optimized by factorial design and response surface methodology (RSM) to maximize the value of the resulting BSG biomass. Two Rhizopus sp. strains were tested as inoculum (one wild and one mutant strain) and time and temperature were analyzed. Measured response variables included, among others, protein content, soluble protein, degree of hydrolysis, antioxidant activity, total phenolic content and antibacterial activity. Both strains led to the highest protein concentration (31.7 ± 7.6%) and soluble protein (47.4 ± 3.8 mg/g DM) when BSG was fermented at 30 °C for 9 days. The biomass obtained presented a modified amino acid profile resulting in an essential amino acid index (EAAI) of 1.58 compared to FAO human nutrition standard, with antioxidant capacity (59.7 ± 7.7% DPPH reduction) and 11 times higher total polyphenol content (2.7 ± 0.1 mg GAE/g DM). Hereby, results demonstrate that SSF of BSG results in a significant increase of highly appreciated characteristics for feed or food applications, which could lead to a promising valorization alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acids

EAA:

Essential amino acids

EAAI:

Essential amino acid index

FA:

Fatty acids

DH:

Degree of hydrolysis

TEAC:

Trolox equivalent antioxidant capacity

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

TPC:

Total phenolic content

References

  1. Mussatto, S.I., Dragone, G., Roberto, I.C.: Brewers’ spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43(1), 1–14 (2006). https://doi.org/10.1016/j.jcs.2005.06.001

    Article  Google Scholar 

  2. Santos, M., Jiménez, J.J., Bartolomé, B., Gómez-Cordovés, C., del Nozal, M.J.: Variability of brewer’s spent grain within a brewery. Food Chem. 80(1), 17–21 (2003). https://doi.org/10.1016/S0308-8146(02)00229-7

    Article  Google Scholar 

  3. Steiner, J., Procopio, S., Becker, T.: Brewer’s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims. Eur. Food Res. Technol. 241(3), 303–315 (2015). https://doi.org/10.1007/s00217-015-2461-7

    Article  Google Scholar 

  4. The Brewers of Europe.: Beer statistics 2017 edition. The Brewers of Europe, Bruxelles (2017)

    Google Scholar 

  5. Ikram, S., Huang, L.Y., Zhang, H.J., Wang, J., Yin, M.: Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 82(10), 2232–2242 (2017). https://doi.org/10.1111/1750-3841.13794

    Article  Google Scholar 

  6. McCarthy, A.L., O’Callaghan, Y.C., Piggott, C.O., FitzGerald, R.J., O’Brien, N.M.: Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proc. Nutr. Soc. 72(1), 117–125 (2013). https://doi.org/10.1017/S0029665112002820

    Article  Google Scholar 

  7. Ozturk, S., Ozboy, O., Cavidoglu, I., Koksel, H.: Effects of brewer’s spent grain on the quality and dietary fibre content of cookies. J. Inst. Brew. 108(1), 23–27 (2002)

    Article  Google Scholar 

  8. Weger, A., Jung, R., Stenzel, F., Hornung, A.: Optimized energetic usage of brewers’ spent grains. Chem. Eng. Technol. 40(2), 306–312 (2017). https://doi.org/10.1002/ceat.201600186

    Article  Google Scholar 

  9. Russ, W., Mörtel, H., Meyer-Pittroff, R.: Application of spent grains to increase porosity in bricks. Constr. Build. Mater. 19(2), 117–126 (2005). https://doi.org/10.1016/j.conbuildmat.2004.05.014

    Article  Google Scholar 

  10. Mishra, P.K., Gregor, T., Wimmer, R.: Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. Bioresources. 12(1), 107–116 (2017). https://doi.org/10.15376/biores.12.1.107-116

    Article  Google Scholar 

  11. Chiang, P.C., Chang, P., You, J.H.: Innovative technology fr controlling voc emissions. J. Hazard. Mater. 31(1), 19–28 (1992). https://doi.org/10.1016/0304-3894(92)87036-f

    Article  Google Scholar 

  12. Xiros, C., Christakopoulos, P.: Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valoriz. 3(2), 213–232 (2012). https://doi.org/10.1007/s12649-012-9108-8

    Article  Google Scholar 

  13. Carvalheiro, F., Esteves, M.P., Parajó, J.C., Pereira, H., Gírio, F.M.: Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol. 91(1), 93–100 (2004). https://doi.org/10.1016/S0960-8524(03)00148-2

    Article  Google Scholar 

  14. Almeida, A.D., Geraldo, M.R.F., Ribeiro, L.F., Silva, M.V., Maciel, M., Haminiuk, C.W.I.: Bioactive compounds from brewer’s spent grain: phenolic compounds, fatty acids and in vitro antioxidant capacity. Acta Sci.-Technol. 39(3), 269–277 (2017). https://doi.org/10.4025/actascitechnol.v39i3.28435

    Article  Google Scholar 

  15. Connolly, A., O’Keeffe, M.B., Piggott, C.O., Nongonierma, A.B., FitzGerald, R.J.: Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers’ spent grain protein isolate. Food Chem. 176, 64–71 (2015). https://doi.org/10.1016/j.foodchem.2014.12.027

    Article  Google Scholar 

  16. Vieira, E., Teixeira, J., Ferreira, I.: Valorization of brewers’ spent grain and spent yeast through protein hydrolysates with antioxidant properties. Eur. Food Res. Technol. 242(11), 1975–1984 (2016). https://doi.org/10.1007/s00217-016-2696-y

    Article  Google Scholar 

  17. Radosavljevic, M., Pejin, J., Kocic-Tanackov, S., Mladenovic, D., Djukic-Vukovic, A., Mojovic, L.: Brewers’ spent grain and thin stillage as raw materials in l-(+)-lactic acid fermentation. J. Inst. Brew. 124(1), 23–30 (2018). https://doi.org/10.1002/jib.462

    Article  Google Scholar 

  18. Gregori, A., Švagelj, M., Pahor, B., Berovič, M., Pohleven, F.: The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. N Biotechnol. 25(2), 157–161 (2008). https://doi.org/10.1016/j.nbt.2008.08.003

    Article  Google Scholar 

  19. Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A.: Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40(8), 2689–2694 (2005). https://doi.org/10.1016/j.procbio.2004.12.001

    Article  Google Scholar 

  20. Nigam, P.S., Pandey, A.: Biotechnology for agro-industrial residues utilization. Springer, Dordrecht (2009)

    Book  Google Scholar 

  21. Kupski, L., Cipolatti, E., da Rocha, M., Oliveira, M.D., Souza-Soares, L.D., Badiale-Furlong, E.: Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae. Brazil. Arch. Biol. Technol. 55(6), 937–942 (2012). https://doi.org/10.1590/S1516-89132012000600018

    Article  Google Scholar 

  22. Lizardi-Jimenez, M.A., Hernandez-Martinez, R.: Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech. 7(1), 44 (2017). https://doi.org/10.1007/s13205-017-0692-y

    Article  Google Scholar 

  23. Abd Razak, D.L., Abd Rashid, N.Y., Jamaluddin, A., Sharifudin, S.A., Abd Kahar, A., Long, K.: Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. Agric. Sci. 16(2), 127–134 (2017). https://doi.org/10.1016/j.jssas.2015.04.001

    Article  Google Scholar 

  24. Cooray, S.T., Chen, W.N.: Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. J. Funct. Foods. 42, 85–94 (2018). https://doi.org/10.1016/j.jff.2017.12.027

    Article  Google Scholar 

  25. Ghosh, B., Ray, R.R.: Current commercial perspective of Rhizopus oryzae: a review. J. Appl. Sci. 11(14), 2470–2486 (2011). https://doi.org/10.3923/jas.2011.2470.2486

    Article  Google Scholar 

  26. Meussen, B.J., de Graaff, L.H., Sanders, J.P., Weusthuis, R.A.: Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl. Microbiol. Biotechnol. 94(4), 875–886 (2012). https://doi.org/10.1007/s00253-012-4033-0

    Article  Google Scholar 

  27. Cantabrana, I., Perise, R., Hernández, I.: Uses of Rhizopus oryzae in the kitchen. Int. J. Gastron. Food Sci. 2(2), 103–111 (2015). https://doi.org/10.1016/j.ijgfs.2015.01.001

    Article  Google Scholar 

  28. Villas-Boas, S.G., Esposito, E., Mitchell, D.A.: Microbial conversion of lignocellulosic residues for production of animal feeds. Anim. Feed Sci. Technol. 98(1–2), 1–12 (2002). https://doi.org/10.1016/s0377-8401(02)00017-2

    Article  Google Scholar 

  29. Lopez, E., Deive, F.J., Longo, M.A., Sanroman, M.A.: Strategies for utilisation of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae. Bioprocess. Biosyst. Eng. 33(8), 929–935 (2010). https://doi.org/10.1007/s00449-010-0416-8

    Article  Google Scholar 

  30. Hsiao, N.-W., Chen, Y., Kuan, Y.-C., Lee, Y.-C., Lee, S.-K., Chan, H.-H., Kao, C.-H.: Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract. Peptidase R. Electron. J. Biotechnol. 17(2), 89–94 (2014). https://doi.org/10.1016/j.ejbt.2014.02.002

    Article  Google Scholar 

  31. Ibarruri, J., Hernández, I.: Rhizopus oryzae as fermentation agent in food derived sub-products. Waste Biomass Valoriz. 9(11), 2107–2115 (2018). https://doi.org/10.1007/s12649-017-0017-8

    Article  Google Scholar 

  32. Ferreira, J.A., Lennartsson, P.R., Niklasson, C., Lundin, M., Edebo, L., Taherzadeh, M.J.: Spent sulphite liquor for cultivation of an edible Rhizopus sp. Bioresources 7(1), 173–188 (2012)

    Google Scholar 

  33. FazeliNejad, S., Ferreira, J.A., Brandberg, T., Lennartsson, P.R., Taherzadeh, M.J.: Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF). Biofuel Res. J. 3(1), 372–378 (2016). https://doi.org/10.18331/brj2016.3.1.7

    Article  Google Scholar 

  34. Canedo, M.S., de Paula, F.G., da Silva, F.A., Vendruscolo, F.: Protein enrichment of brewery spent grain from Rhizopus oligosporus by solid-state fermentation. Bioprocess Biosyst. Eng. 39(7), 1105–1113 (2016). https://doi.org/10.1007/s00449-016-1587-8

    Article  Google Scholar 

  35. Centro de Investigación y Control de la Calidad: Análisis de alimentos: métodos oficiales y recomendados por el Centro de Investigación y Control de la Calidad. Ministerio de Sanidad y Consumo, Madrid (1985)

    Google Scholar 

  36. UNE EN ISO.: Animal feeding stuffs—determination of amylase-treated neutral detergent fibre content (aNDF). (2006)

  37. Satari, B., Karimi, K., Taherzadeh, M.J., Zamani, A.: Co-production of fungal biomass derived constituents and ethanol from citrus wastes free sugars without auxiliary nutrients in airlift bioreactor. Int. J. Mol. Sci. 17(3), 302 (2016). https://doi.org/10.3390/ijms17030302

    Article  Google Scholar 

  38. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959). https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  39. Waghmare, A.G., Salve, M.K., LeBlanc, J.G., Arya, S.S.: Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresour. Bioprocess. 3(1), 1 (2016). https://doi.org/10.1186/s40643-016-0094-8

    Article  Google Scholar 

  40. FAO/WHO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition, vol. 935. WHO Technical Report Series, Geneva (2007)

    Google Scholar 

  41. Nielsen, P.M., Petersen, D., Dambmann, C.: Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66(5), 642–646 (2001). https://doi.org/10.1111/j.1365-2621.2001.tb04614.x

    Article  Google Scholar 

  42. Bougherra, F., Dilmi-Bouras, A., Balti, R., Przybylski, R., Adoui, F., Elhameur, H., Chevalier, M., Flahaut, C., Dhulster, P., Naima, N.: Antibacterial activity of new peptide from bovine casein hydrolyzed by a serine metalloprotease of Lactococcus lactis sub lattice BR16. J. Funct. Foods. 32(Supplement C), 112–122 (2017). https://doi.org/10.1016/j.jff.2017.02.026

    Article  Google Scholar 

  43. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 28(1), 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  44. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144 (1965)

    Google Scholar 

  45. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  46. Oliveira, M.d.S., Feddern, V., Kupski, L., Cipolatti, E.P., Badiale-Furlong, E., de Souza-Soares, L.A.: Physico-chemical characterization of fermented rice bran biomass. Caracterización fisico-química de la biomasa del salvado de arroz fermentado. CyTA—J. Food. 8(3), 229–236 (2010). https://doi.org/10.1080/19476330903450274

    Article  Google Scholar 

  47. Rajesh, N., Imelda, J., Raj, R.P.: Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry. Waste Manag. 30(11), 2223–2227 (2010). https://doi.org/10.1016/j.wasman.2009.12.017

    Article  Google Scholar 

  48. Buenrostro-Figueroa, J.J., Velázquez, M., Flores-Ortega, O., Ascacio-Valdés, J.A., Huerta-Ochoa, S., Aguilar, C.N., Prado-Barragán, L.A.: Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochem. 62, 16–23 (2017). https://doi.org/10.1016/j.procbio.2017.07.016

    Article  Google Scholar 

  49. Ajila, C.M., Gassara, F., Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R.: Polyphenolic antioxidant mobilization in apple pomace by different methods of solid-state fermentation and evaluation of its antioxidant activity. Food Bioprocess Technol. 5(7), 2697–2707 (2012). https://doi.org/10.1007/s11947-011-0582-y

    Article  Google Scholar 

  50. Fruet, A.P.B., Stefanello, F.S., Rosado Júnior, A.G., Souza, A.N.M.d., Tonetto, C.J., Nörnberg, J.L.: Whole grains in the finishing of culled ewes in pasture or feedlot: performance, carcass characteristics and meat quality. Meat Sci. 113, 97–103 (2016). https://doi.org/10.1016/j.meatsci.2015.11.018

    Article  Google Scholar 

  51. Paraskevakis, N.: Effects of dietary dried Greek Oregano (Origanum vulgare ssp. hirtum) supplementation on blood and milk enzymatic antioxidant indices, on milk total antioxidant capacity and on productivity in goats. Anim. Feed Sci. Technol. 209, 90–97 (2015). https://doi.org/10.1016/j.anifeedsci.2015.09.001

    Article  Google Scholar 

  52. Castillo, C., Pereira, V., Abuelo, A., Hernandez, J.: Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci. World J. (2013) https://doi.org/10.1155/2013/616098

    Article  Google Scholar 

  53. Wang, D., Sakoda, A., Suzuki, M.: Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour. Technol. 78(3), 293–300 (2001). https://doi.org/10.1016/S0960-8524(01)00002-5

    Article  Google Scholar 

  54. Dulf, F.V., Vodnar, D.C., Socaciu, C.: Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 209, 27–36 (2016). https://doi.org/10.1016/j.foodchem.2016.04.016

    Article  Google Scholar 

  55. Correia, R.T.P., McCue, P., Magalhães, M.M.A., Macêdo, G.R., Shetty, K.: Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochem. 39(12), 2167–2172 (2004). https://doi.org/10.1016/j.procbio.2003.11.034

    Article  Google Scholar 

  56. Oliveira, M.D., Feddern, V., Kupski, L., Cipolatti, E.P., Badiale-Furlong, E., de Souza-Soares, L.A.: Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour. Technol. 102(17), 8335–8338 (2011). https://doi.org/10.1016/j.biortech.2011.06.025

    Article  Google Scholar 

  57. FEDNA. Fibra neutro detergente, Ácido detergente Y Lignina (FND,FAD,LAD secuenciales). http://fundacionfedna.org/tecnicas_de_analisis/fibra-neutro-detergente-%C3%A1cido-detergente-y-lignina-fndfadlad-secuenciales. Accessed 30 Sep, 2018

  58. Ferret, A., Calsamiglia, S., Bach, A., Devant, M., Fernández, C., García-Rebollar, P.: Necesidades nutricionales para rumiantes de cebo. In: FEDNA (Fundación Española para el Desarrollo de la Nutrición Animal) (2008)

  59. Kaur, V.: Incorporation of brewery waste in supplementary feed and its impact on growth in some carps. Bioresour. Technol. 91(1), 101–104 (2004). https://doi.org/10.1016/s0960-8524(03)00073-7

    Article  MathSciNet  Google Scholar 

  60. Miles, R.D., Chapman, F.A.: The benefits of fish meal in aquaculture diets. Institute of Food and Agricultural Sciences, University of Florida, Florida (2006)

    Google Scholar 

  61. Asadollahzadeh, M., Ghasemian, A., Saraeian, A., Resalati, H., Taherzadeh, M.: Production of fungal biomass protein by filamentous fungi cultivation on liquid waste streams from pulping process. BioResources. 13(1), 5013–5031 (2018). https://doi.org/10.15376/biores.13.3.5013-5031

    Article  Google Scholar 

  62. Nitayavardhana, S., Issarapayup, K., Pavasant, P., Khanal, S.K.: Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour. Technol. 133, 301–306 (2013). https://doi.org/10.1016/j.biortech.2013.01.073

    Article  Google Scholar 

  63. Wei, D., Li, M., Zhang, X., Ren, Y., Xing, L.: Identification and characterization of a novel delta12-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett. 573(1–3), 45–50 (2004). https://doi.org/10.1016/j.febslet.2004.06.100

    Article  Google Scholar 

  64. Innes, J.K., Calder, P.C.: Prostaglandins: Omega-6 fatty acids and inflammation. Leukot. Essent. Fatty Acids. 132, 41–48 (2018). https://doi.org/10.1016/j.plefa.2018.03.004

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank to Boga Cooperative for providing the BSG. This work was funded by the Basque Government (Department of Economic and Infrastructure Development, Agriculture, Fisheries and Food policy). This paper is Contribution No. 901 from AZTI (Food Research).

Funding

Funding was provided by Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jone Ibarruri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2847 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibarruri, J., Cebrián, M. & Hernández, I. Solid State Fermentation of Brewer’s Spent Grain Using Rhizopus sp. to Enhance Nutritional Value. Waste Biomass Valor 10, 3687–3700 (2019). https://doi.org/10.1007/s12649-019-00654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00654-5

Keywords

Navigation