Skip to main content
Log in

Phyco-synthesis of Silver Nanoparticles Mediated from Marine Algae Sargassum myriocystum and Its Potential Biological and Environmental Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study aims at developing an innovative eco-friendly process in a way to generate safer and more stable silver nanoparticles (Ag-NPs) with a high purity by means of Sargassum myriocystum aqueous extract. The Ag-NPs formation was preliminary confirmed by UV–Visible spectroscopy analysis based on band of surface plasmon resonance appeared at 420 nm. X-ray diffraction spectrum and Fourier Transform Infrared spectrometer confirmed the crystalline in nature and phyco-molecules involved in the synthesis of Ag-NPs, respectively. The results obtained from the Transmission Electron Microscopy and Scanning Electron Microscopy demonstrated that the synthesized Ag-NPs were well dispersed hexagonal shape with average size of 20 ± 2.2 nm. The Energy Dispersive X-ray spectroscopy results observed a strong band at 3 keV proved the presence of metallic Ag ions in the Ag-NPs. The significant antibacterial activity was showed that Ag-NPs against clinical pathogens (Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Pseudomonas aeruginosa, S. epidermidis, and Klebsiella pneumoniae). Larvicidal activity against the mosquitos Aedes aegypti and Culex quinquefasciatus and anti-biofilm activity was assessed using phyco-molecule coated Ag NPs. Further, anticancer activity results showed that the 50% inhibitory concentration (IC50) noticed at 73.66 µg/mL using MTT assay against human cervical carcinoma (HeLa) cells. In addition, the phyco-synthesized Ag-NPs exhibited potential photocatalytic activity against methylene blue (MB). The maximum percent of MB degradation was observed at 98% within 60 min. Therefore, the present outcomes clearly revealed that the phyco-synthesized Ag-NPs could be used for effective nano-drug for anticancer, prevention of several bacterial strain infections, control the vector borne diseases, as well as to adequately degraded the organic dyes to promising and economical strategy in industries which involve dyeing process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmad, T., Wani, I.A., Lone, I.H., Ganguly, A., Manzoor, N., Ahmad, A., Ahmed, J., Al-Shihri, A.S.: Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res. Bull. 48, 12–20 (2013). https://doi.org/10.1016/j.materresbull.2012.09.069

    Article  Google Scholar 

  2. Miranzadeh, M., Kassaee, M.Z.: Solvent effects on arc discharge fabrication of durable silver nanopowder and its application as a recyclable catalyst for elimination of toxic p-nitrophenol. Chem. Eng. J. 257, 105–111 (2014). https://doi.org/10.1016/j.cej.2014.06.088

    Article  Google Scholar 

  3. Edison, T.J.I., Sethuraman, M.G.: Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351–1357 (2012)

    Article  Google Scholar 

  4. Ghosh, S., Patil, S., Ahire, M., Kitture, R., Gurav, D.D., Jabgunde, A.M., Kale, S., Pardesi, K., Shinde, V., Bellare, J., Dhavale, D.D., Chopade, B.A.: Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J. Nanobiotechnol. 10, 17 (2012). https://doi.org/10.1186/1477-3155-10-17

    Article  Google Scholar 

  5. Asmathunisha, N., Kathiresan, K.: A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B 103, 283–287 (2013)

    Article  Google Scholar 

  6. Stegarescu, A., Lung, I., Leoștean, C., Kacso, I., Opris, O., Diana Lazar, M., Copolovici, L., Gutoiu, S., Stan, M., Popa, A., Pana, O., Sebastian Porav, A., Soran, M.: Green synthesis, characterization and test of MnO2 nanoparticles as catalyst in biofuel production from grape residue and seeds oil. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00805-8

    Article  Google Scholar 

  7. Patra, C.R., Bhattacharya, R., Mukhopadhyay, D., Mukherjee, P.: Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 62, 346–361 (2010)

    Article  Google Scholar 

  8. Wang, L., Hu, C., Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)

    Article  Google Scholar 

  9. Manivannan, K., Devi, G.K., Thirumaran, G., Anantharaman, P.: Mineral composition of marine Macroalge from Mandapam coastal regions; Southeast Coast of India. Am. J. Bot. 1, 58–67 (2008)

    Google Scholar 

  10. Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., Nasri, N.S.: Treatment of wastewater using seaweed: a review. Int. J. Environ. Res. Public Health 15, 2851 (2018)

    Article  Google Scholar 

  11. Badrinathan, S., Suneeva, S.C., Shiju, T.M., Girish Kumar, C.P., Pragasam, V.: Exploration of a novel hydroxyl radical scavenger from Sargassum myriocystum. J. Med. Plants Res. 5(10), 1997–2005 (2011)

    Google Scholar 

  12. Suresh, V., Senthilkumar, N., Thangam, R., Rajkumar, M., Anbazhagan, C., Rengasamy, R., Gunasekaran, P., Kannan, S., Palani, P.: Separation, purification and preliminary characterization of sulfated polysaccharides from Sargassum plagiophyllum and its in vitro anticancer and antioxidant activity. Process Biochem. 48, 364–373 (2013)

    Article  Google Scholar 

  13. Badrinathan, S., Shiju, T.M., Suneeva, A., Sharon, C., Arya, R., Pragasam, V.: Purification and structural characterization of sulfated polysaccharide from Sargassum myriocystum and its efficacy in scavenging free radicals. Indian J Pharm Sci. 4(6), 549–555 (2012)

    Google Scholar 

  14. Liu, L., Heinrich, M., Myers, S., Dworjanyn, S.A.: Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J. Ethnopharmacol. 142, 591–619 (2012)

    Article  Google Scholar 

  15. Azizi, S., Ahmad, M.B., Namvar, F., Mohamad, R.: Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 116, 275–277 (2014)

    Article  Google Scholar 

  16. Sanaeimehr, Z., Javadi, I., Namvar, F.: Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9, 3 (2018). https://doi.org/10.1186/s12645-018-0037-5

    Article  Google Scholar 

  17. Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G., Sundaramanickam, A.: Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl. Nanosci. 4, 881–888 (2014). https://doi.org/10.1007/s13204-013-0271-4

    Article  Google Scholar 

  18. Kumaresan, M., Vijai Anand, K., Govindaraju, K., Tamilselvan, S., Ganesh Kumar, V.: Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog. 124, 311–315 (2018). https://doi.org/10.1016/j.micpath.2018.08.060

    Article  Google Scholar 

  19. Murugan, K., Roni, M., Panneerselvam, C., Aziz, A.T., Suresh, U., Rajaganesh, R., Aruliah, R., Mahyoub, J.A., Trivedi, S., Rehman, H., Naji Al-Aoh, H.A., Kumar, S., Higuchi, A., Vaseeharan, B., Wei, H., Senthil-Nathan, S., Canale, A., Benelli, G.: Sargassum wightii -synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213 (2018). https://doi.org/10.1016/j.pmpp.2017.02.004

    Article  Google Scholar 

  20. Vetrivel, C., Balamuralikrishnan, B., Durairaj, K., Sungkwon, P., Velmurugan, P., Ragavendran, C., Sigamani, S., Maruthupandian, A.: Fabrication and characterization of noble crystalline silver nanoparticles from Ceropegia bulbosa Roxb root tuber extract for antibacterial, larvicidal and histopathology applications. Nanosci. Nanotechnol. Lett. 11, 11–21 (2018). https://doi.org/10.1166/nnl.2019.2845

    Article  Google Scholar 

  21. Vinoth, S., Shankar, S.G., Gurusaravanan, P., Janani, B., Devi, J.K.: Anti-larvicidal activity of silver nanoparticles synthesized from Sargassum polycystum against mosquito vectors. J. Clust. Sci. 30, 171–180 (2019). https://doi.org/10.1007/s10876-018-1473-4

    Article  Google Scholar 

  22. Deepak, P., Balamuralikrishnan, B., Park, S., Sowmiya, R., Balasubramani, G., Aiswarya, D., Amutha, V., Perumal, P.: Phytochemical profiling of marine red alga, Halymenia palmata and its bio-control effects against Dengue Vector, Aedes aegypti. S. Afr. J Bot. 121, 257–266 (2019). https://doi.org/10.1016/j.sajb.2018.11.011

    Article  Google Scholar 

  23. Abbott, W.S.: A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925). https://doi.org/10.1093/jee/18.2.265a

    Article  Google Scholar 

  24. Wadley, F.M.: Probit analysis: a statistical treatment of the sigmoid response curve. Science 116, 286–287 (1952). https://doi.org/10.1126/science.116.3011.286

    Article  Google Scholar 

  25. Cittrarasu, V., Balasubramanian, B., Kaliannan, D., Park, S., Maluventhan, V., Kaul, T., Liu, W.C., Arumugam, M.: Biological mediated Ag nanoparticles from Barleria longiflora for antimicrobial activity and photocatalytic degradation using methylene blue. Artif. Cells. Nanomed. Biotechnol. 47, 2424–2430 (2019)

    Article  Google Scholar 

  26. Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.-C., Sasaki, Y.F.: Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–221 (2000)

    Article  Google Scholar 

  27. Madhiyazhagan, P., Murugan, K., Kumar, A.N., Nataraj, T., Dinesh, D., Panneerselvam, C., Subramaniam, J., Kumar, P.M., Suresh, U., Roni, M., Nicoletti, M., Alarfaj, A.A., Higuchi, A., Munusamy, M.A., Benelli, G.: S argassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. 114, 4305–4317 (2015). https://doi.org/10.1007/s00436-015-4671-0

    Article  Google Scholar 

  28. Pugazhendhi, A., Prabakar, D., Jacob, J.M., Karuppusamy, I., Saratale, R.G.: Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb. Pathog. 114, 41–45 (2018)

    Article  Google Scholar 

  29. Kumar, P., Senthamil Selvi, S., Govindaraju, M.: Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl. Nanosci. 3, 495–500 (2013). https://doi.org/10.1007/s13204-012-0151-3

    Article  Google Scholar 

  30. Ganapathy Selvam, G., Sivakumar, K.: Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl. Nanosci. 5, 617–622 (2015)

    Article  Google Scholar 

  31. Patel, V., Berthold, D., Puranik, P., Gantar, M.: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 5, 112–119 (2015). https://doi.org/10.1016/j.btre.2014.12.001

    Article  Google Scholar 

  32. Vasquez, R.D., Apostol, J.G., de Leon, J.D., Mariano, J.D., Mirhan, C.M.C., Pangan, S.S., Reyes, A.G.M., Zamora, E.T.: Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum J.G. Agardh: assessment of toxicity and hepatoprotective activity. OpenNano 1, 16–24 (2016)

    Article  Google Scholar 

  33. Arreche, R.A., Montes de Oca-Vásquez, G., Vega-Baudrit, J.R., Vazquez, P.G.: Synthesis of silver nanoparticles using extracts from yerba mate (Ilex paraguariensis). Wastes. Waste Biomass Valor. 11, 245–253 (2020). https://doi.org/10.1007/s12649-018-0394-7

    Article  Google Scholar 

  34. Kathiraven, T., Sundaramanickam, A., Shanmugam, N., Balasubramanian, T.: Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci. 5, 499–504 (2015)

    Article  Google Scholar 

  35. Vishwasrao, C., Momin, B., Ananthanarayan, L.: Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valor. 10, 2353–2363 (2019). https://doi.org/10.1007/s12649-018-0230-0

    Article  Google Scholar 

  36. Anjugam, M., Vaseeharan, B., Iswarya, A., Divya, M., Prabhu, N.M., Sankaranarayanan, K.: Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microb. Pathog. 115, 31–40 (2018)

    Article  Google Scholar 

  37. Marambio-Jones, C., Hoek, E.M.V.: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010). https://doi.org/10.1007/s11051-010-9900-y

    Article  Google Scholar 

  38. Amutha, V., Deepak, P., Kamaraj, C., Balasubramani, G., Aiswarya, D., Arul, D., Santhanam, P., Ballamurugan, A.M., Perumal, P.: Mosquito-larvicidal potential of metal and oxide nanoparticles synthesized from aqueous extract of the seagrass, Cymodocea serrulata. J. Clust. Sci. 30, 797–812 (2019). https://doi.org/10.1007/s10876-019-01542-7

    Article  Google Scholar 

  39. Deepak, P., Sowmiya, R., Ramkumar, R., Balasubramani, G., Aiswarya, D., Perumal, P.: Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed Turbinaria ornata (Turner) J. Agardh 1848. Artif Cells Nanomed Biotechnol 45, 990–998 (2017)

    Article  Google Scholar 

  40. Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., Natarajan, S.: Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B 190, 86–97 (2019). https://doi.org/10.1016/j.jphotobiol.2018.11.014

    Article  Google Scholar 

  41. Venkatesan, J., Kim, S.-K., Shim, M.: Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials 6, 235 (2016). https://doi.org/10.3390/nano6120235

    Article  Google Scholar 

  42. Chothiphirat, A., Nittayaboon, K., Kanokwiroon, K., Srisawat, T., Navakanitworakul, R.: Anticancer potential of fruit extracts from vatica diospyroides symington type SS and their effect on program cell death of cervical cancer cell lines. Sci. World J. 1, 9 (2019). https://doi.org/10.1155/2019/5491904(2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Botany, Periyar University, India for providing infrastructural facility and gratefully acknowledge to the Sejong University, Seoul, Republic of Korea for their support of instrumental analysis facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balamuralikrishnan Balasubramanian, Hesam Kamyab or Arumugam Maruthupandian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaraman, P., Balasubramanian, B., Kaliannan, D. et al. Phyco-synthesis of Silver Nanoparticles Mediated from Marine Algae Sargassum myriocystum and Its Potential Biological and Environmental Applications. Waste Biomass Valor 11, 5255–5271 (2020). https://doi.org/10.1007/s12649-020-01083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01083-5

Keywords

Navigation